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Abstract—In this paper, we consider beampattern synthesis with a
constraint on the dynamic range ratio (DRR), which is defined as the
proportion between the maximum and minimum amplitude excitations
applied to the array elements. Utilizing the trigonometric function
technique, we reformulate and simplify the non-convex constraint on
DRR. This allows us to derive a new beampattern synthesis formulation
with DRR constraint, which can be solved through sequential convex
optimization. Compared to existing algorithms, the proposed algorithm
can be executed very easily. Moreover, our algorithm exhibits high
effectiveness on both focused and shaped beampatterns. Both theoretical
and simulation results confirm that the proposed algorithm does not
rely on the initial setting and exhibits good convergence performance.
Representative simulations are provided to demonstrate the effectiveness
and superiority of the proposed algorithm in various scenarios.

Index Terms—Beampattern synthesis, dynamic range ratio constraint,
focused beampattern, shaped beampattern, convex optimization.

I. INTRODUCTION

BEAMPATTERN synthesis has attracted significant attention in
recent years due to its diverse applications in radar, communi-

cation, and other fields. Various algorithms have been proposed for
beampattern synthesis, including global search algorithms [1]–[3],
deterministic algorithms [4]–[6], and optimization algorithms [7]–
[11]. Nevertheless, a crucial consideration in practical array systems
is the dynamic range ratio (DRR), which is defined as the proportion
between the maximum and minimum amplitude excitations applied
to the array elements. A high DRR leads to a substantial increase in
costs. This is primarily due to the fact that antennas with higher DRR
typically require more complex and expensive hardware components.
Therefore, beampattern synthesis with DRR constraint is crucial in
designing cost-efficient antenna array systems.

In previous works, a number of strategies haven been proposed to
reduce DRR in beampattern synthesis. In [12], the DRR suppression
was discussed with null constraints. The authors showed that the
lower bound of the DRR depends on the null directions. However,
this method can be computationally intensive when strict constraints
are applied. The semidefinite relaxation technique was utilized in
[13] to reduce DRR. However, it required an approximate eigenvalue
decomposition [14] to recover the excitations, which may degrade the
performance of beampattern. An iterative approximation algorithm
was presented in [15] to reduce DRR, by approximating the non-
convex DRR constraint as a linear convex one. Since an additional
correction to the weights is required, the beampattern may be
deteriorated ultimately. In [16], auxiliary variables were incorporated
to enforce the excitations to comply with the DRR. Similar to [15], an
additional correction is required for the algorithm in [16]. The authors
of [17] proposed a depth-first algorithm to constrain DRR in case of
real excitations. However, it is unable to independently solve the
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shaped beampattern synthesis problem with DRR constraint. Apart
from the aforementioned works, there are other algorithms proposed
to reduce DRR as reported in [18]–[24]. All the aforementioned
algorithms suffer from several issues, including slow convergence
rates, resulting high DRRs, and unsatisfactory beampatterns.

In this paper, we consider beampattern synthesis with DRR
constraint. Utilizing the trigonometric function technique [25], we
reformulate and simplify the non-convex constraint on DRR. This
allows us to derive a new beampattern synthesis formulation with
DRR constraint, which can be solved through sequential convex
optimization. Compared to existing algorithms, the proposed algo-
rithm can be executed very easily. Moreover, our algorithm exhibits
high effectiveness on both focused and shaped beampatterns, while
demonstrating insensitivity to the selection of initial parameters for
iterations. Representative simulations are conducted to show the
effectiveness and superiority of the proposed algorithm.

II. PROBLEM FORMULATION

Assuming narrowband and far-field conditions, we take focused
beampattern synthesis as an example. The objective is to synthesize
a beampattern that radiates main beam towards θ0, while minimizing
the peak sidelobe level (PSL). Considering the DRR constraint, we
can formulate the problem as

min
w,ρ

ρ (1a)

s.t. wHa(θ0) = 1 (1b)

|wHa(θs)| ≤ ρ, θs ∈ ΘS (1c)

DRR(w) ≤ ε (1d)

where w = [w1, · · · , wN ]T is the complex excitation vector, N
stands for the element number, (·)H denotes the Hermitian transpose,
(·)T denotes the transpose operation, ρ stands for the PSL, ε
represents the given upper limit for DRR, ΘS is the sidelobe region,
a(θ) is the steering vector defined as

a(θ) = [g1(θ)e−jωτ1(θ), · · · , gN (θ)e−jωτN (θ)] (2)

where gi(θ) is the element pattern of the ith antenna, ω is the
operating frequency, τi(θ) denotes the time delay between the ith
element and the reference one.

In problem (1), the DRR is defined as

DRR(w) ,
max

n=1,··· ,N
|wn|

min
m=1,··· ,N

|wm|
. (3)

Then, the DRR constraint (1d) can be readily re-expressed as

min
m=1,··· ,N

|wm|

max
n=1,··· ,N

|wn|
≥ ζ (4)

where ζ , 1/ε. The main challenge for the problem (1) is how to
address the non-convex constraint (1d) or (4).
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III. BEAMPATTERN SYNTHESIS WITH DRR CONSTRAINT USING

SEQUENTIAL CONVEX OPTIMIZATION.

In this section, we reformulate the DRR constraint, and utilize
sequential convex optimization to solve the focused beampattern
synthesis problem. Moreover, convergence analysis of the proposed
algorithm is presented, and extension to the shaped beampattern
synthesis scenario is discussed.

A. Focused Beampattern Synthesis With DRR Constraint

Before addressing the focused beampattern synthesis problem (1),
it is essential to observe the following equality:

min
m=1,··· ,N

|wm|

max
n=1,··· ,N

|wn|
= min
i,j=1,··· ,N, i 6=j

∣∣∣wi
wj

∣∣∣. (5)

According to (5), the DRR constraint (4) can be rewritten as

|wi| ≥ ζ · |wj |, ∀i, j = 1, · · · , N, i 6= j. (6)

To handle the above constraints, let

αi , ∠wi (7)

where ∠(·) returns the phase of input complex value, i = 1, · · · , N .
Then, it is not difficult to express |wi| as

|wi| = R(wi)cos(αi) + I(wi)sin(αi) (8)

where R(·) and I(·) stands for the real part and the imaginary part
of a complex value, respectively. A graphical interpretation for (8) is
shown in Fig. 1.

Combining (6) and (8), the DRR constraint can be formulated as

R(wi)cos(αi) + I(wi)sin(αi) ≥ ζ · |wj |,
∀i, j = 1, · · · , N, i 6= j. (9)

Although the constraint has been simplified in form, the above
equality implicitly includes the phase constraint (7), and there exists
a multiplicative coupling between wi and αi. Simultaneously, we
observe that for fixed value of {αi}Ni=1, the constraint (9) is convex
with respect to {wi}Ni=1, rendering the beampattern synthesis problem
convex as well.

Based on the above principle, we propose to initialize the value of
{αi}Ni=1 first, then solve the resulting convex optimization problem
to obtain the solution w̄. Using the obtained w̄, we update {αi}Ni=1

according to (7) and proceed to the next iteration of convex opti-
mization. The above process is repeated iteratively. Ultimately, the
problem of beampattern synthesis with DRR constraint can be solved
using sequential convex optimization.

Specifically, in the kth iteration, we solve the following convex
optimization problem:

min
wk,ρ

ρ (10a)

s.t. wH
k a(θ0) = 1 (10b)

|wH
k a(θs)| ≤ ρ, θs ∈ ΘS (10c)

R(wi,k)cos(αi,k−1)+I(wi,k)sin(αi,k−1) ≥ ζ · |wj,k|,
∀ i, j = 1, · · · , N, i 6= j (10d)

where {αi,k−1}Ni=1 are fixed and determined according to the result
of (k − 1)th iteration as follows:

αi,k−1 = ∠(w̄i,k−1), i = 1, · · · , N (11)

with w̄k−1 = [w̄1,k−1, · · · , w̄N,k−1]T representing the optimal
solution of the (k − 1)th iteration. Note that in the initialization
stage, an initial w̄0 is required which can be determined randomly,

Fig. 1. A graphical interpretation for |wi| = R(wi)cos(αi)+I(wi)sin(αi).

and the initial value of {αi,0}Ni=1 are obtained accordingly. The
aforementioned sequential convex optimization process is conducted
iteratively until the difference in PSL obtained from two adjacent
iterations satisfying |ρk − ρk−1| ≤ δ, where δ is a sufficiently small
number, ρk is the resulting PSL after the kth iteration.

B. Convergence Analysis

Next, we will prove that the value of ρ obtained through the
proposed algorithm is monotonically non-increasing with iterations.

To do so, we denote the optimal solution obtained in the (k−1)th
iteration as (w̄k−1, ρk−1). Then, w̄k−1 and ρk−1 must satisfy

w̄H
k−1a(θ0) = 1 (12)

|w̄H
k−1a(θs)| ≤ ρk−1, θs ∈ ΘS (13)

and

R(w̄i,k−1)cos(αi,k−2)+I(w̄i,k−1)sin(αi,k−2) ≥ ζ · |w̄j,k−1|,
∀ i, j = 1, · · · , N, i 6= j. (14)

According to (14), we can further derive that

R(w̄i,k−1)cos(αi,k−1) + I(w̄i,k−1)sin(αi,k−1) (15a)

= |w̄i,k−1| (15b)

≥ |w̄i,k−1|cos(αi,k−1 − αi,k−2) (15c)

= R(w̄i,k−1)cos(αi,k−2) + I(w̄i,k−1)sin(αi,k−2) (15d)

≥ ζ · |w̄j,k−1|, ∀ i, j = 1, · · · , N. (15e)

Combining (12), (13) and (15), and recalling the optimization prob-
lem (10), we know that (w̄k−1, ρk−1) is a feasible point for the kth
iteration. Then, it is evident that

ρk ≤ ρk−1 (16)

where ρk represents the optimal value for the kth iteration. This indi-
cates that the optimal value of ρ obtained from (10) is monotonically
non-increasing with iterations.

C. Extension to Shaped Beampattern Synthesis With DRR Constraint

The proposed algorithm can be extended to the case of shaped
beampattern synthesis with DRR constraint. In this scenario, addi-
tional non-convex constraints are imposed to limit the lower bound
of beampattern level within a specified region ΘM . After discretizing
the angles, the above constraints can be expressed as

|wHa(θm)| ≥ l(θm), θm ∈ ΘM (17)

where l(θ) denotes the lower bound level.
Utilizing a similar approach to (8), the above constraint (17) can

be re-expressed as

R(wHa(θm))cos(βm) + I(wHa(θm))sin(βm) ≥ l(θm) (18)
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Fig. 2. Focused beampattern synthesis comparison. (a) Synthesized beam-
patterns obtained by the proposed algorithm in different iterations. (b)
Synthesized beampatterns obtained by different algorithms and the full-wave
simulation result of the proposed algorithm.
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Fig. 3. Focused beampattern synthesis by the proposed algorithm with dif-
ferent DRR constraints. (a) Synthesized beampatterns obtained with different
DRR constraints. (b) Normalized element excitations obtained with different
DRR constraints.

where βm , ∠(wHa(θm)). Then, similar to the formulation (10),
we can iteratively update the βm and w. Finally, the problem of
shaped beampattern synthesis with DRR constraint can be solved
using sequential convex optimization.

IV. NUMERICAL RESULTS

In this section, we conduct representative simulations to show
the effectiveness and superiority of the proposed algorithm1. We
assess the performance of our algorithm by comparing it with
the semidefinite relaxation (SDR) algorithm in [13], the iterative
approximation algorithm in [15], the auxiliary variables algorithm
in [16] and the depth-first algorithm in [17]. For simulations below,
the convex optimization problems are solved by CVX toolbox [26],
δ is set to 0.1.

A. Focused Beampattern Synthesis With DRR Constraint

In the first example, we use a linear array comprising 30 uniformly
spaced isotropic elements, with a spacing of 0.5 λ. The mainlobe axis
is θ0 = 25◦. Unless otherwise specified, the DRR is constrained to
be below ε = 1.25.

1) Beampattern Comparison: Fig. 2(a) shows the resultant beam-
patterns of the proposed algorithm at different iterations. One can see
that the PSLs are decreased gradually. For the proposed algorithm,
the termination condition is satisfied after 6 iterations. The ultimate
excitations are provided in Table I, from which the effectiveness of
our algorithm in DRR control can be verified. Fig. 2(b) compares the
beampatterns obtained by different algorithms. Table II provides the
resulting PSLs and running times of different methods, showing that
the proposed algorithm obtains the lowest PSL within an acceptable
running time. To see the impact of mutual coupling on the proposed
algorithm, we conduct a full-wave simulation with patch antennas
using CST full-wave simulation software, operating at a center
frequency of 2.5 GHz. As shown in Fig. 2(b), the full-wave simulation
result of the proposed algorithm is satisfactory.

1The MATLAB codes for the proposed algorithm are available online at
https://zhangxuejing7.github.io/HomePage/.

TABLE I
THE RESULTING EXCITATIONS FOR FOCUSED BEAMPATTERN SYNTHESIS

i wi i wi
1 0.03280e+j0.1290 16 0.04096e−j1.1043

2 0.03284e−j0.9371 17 0.04096e−j2.3552

3 0.03285e−j1.5469 18 0.04096e+j2.5969

4 0.03278e+j1.6382 19 0.04096e+j1.1065

5 0.03280e+j0.7405 20 0.04096e−j0.1507

6 0.03304e−j0.0341 21 0.03406e−j1.6343

7 0.03320e−j2.3317 22 0.03545e−j2.7086

8 0.03291e−j2.9291 23 0.03292e+j1.9001

9 0.03280e+j1.8832 24 0.03277e+j1.2008

10 0.04066e+j0.5772 25 0.03279e−j0.6782

11 0.04096e−j0.7339 26 0.03281e−j1.7149

12 0.04096e−j2.1143 27 0.03302e+j2.1063

13 0.04096e+j2.8979 28 0.03284e+j2.8193

14 0.04096e+j1.5333 29 0.03277e+j0.9734

15 0.04096e+j0.1913 30 0.03281e−j0.5943

TABLE II
THE RESULTING PSLS AND RUNNING TIMES IN THE FIRST EXAMPLE

Proposed [13] [15] [16] [17]

PSL (dB) -19.82 -16.50 -17.13 -14.43 -19.16
Running time (s) 236.33 74.98 273.32 327.99 5.87

1 2 3 4 5 6 7 8 9 10

Iterations

-20

-15

-10

-5

0

5

P
S

L
 (

d
B

)
4 5 6

-20

-18

-16

Random initialization 1

Random initialization 2

Random initialization 3

Deterministic initialization 1

Deterministic initialization 2

Fig. 4. PSL curves with iterations under different w̄0.

2) Beampattern Synthesis With Different DRR Constraints: To
evaluate the influence of DRR on beampattern, Fig. 3(a) presents
the results of the proposed algorithm under various DRR constraints.
The PSLs obtained with DRR=1.15, DRR=1.25, and DRR=1.35, are
-18.11dB, -19.82dB, and -20.88dB, respectively, lower than those
of SDR algorithm (-15.13dB, -16.50dB, -18.01dB), the iterative ap-
proximation algorithm (-14.97dB, -17.13dB, -17.82dB), the auxiliary
variables algorithm (-14.11dB, -14.43dB, -14.52dB) and the depth-
first algorithm (-18.01dB, -19.16dB, -20.01dB). It indicates that as
the DRR decreases, the achieved PSL increases accordingly. The
normalized element excitations obtained using the aforementioned
three DRR constraints are depicted in Figure 3(b). One can see that
the resulting excitations match the given DRR constraints as desired.

3) Convergence Validation of the Proposed Algorithm: To evaluate
the dependence of the proposed algorithm on the initial w̄0, Fig. 4
displays the PSL curves with iterations under different w̄0. For the
value of w̄0, we select three sets of random values as well as two sets
of deterministic values. The first set of deterministic values is an all-
one vector, while the second set has ones for its first half and ejπ/2

for the remaining elements. As can be seen from Fig. 4, for each
set of initial w̄0, the obtained PSL decreases with iterations, and
converges to approximately -19.90dB after about 8 iterations. This
demonstrates that the proposed algorithm does not depend on the
selection of initial w̄0 and exhibits good convergence performance.

B. Multi-Beam Scanning With DRR Constraint

In the second example, we assess the performance of the proposed
algorithm under multi-beam scanning scenario. We use a non-uniform
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Fig. 5. Beampattern comparison in multi-beam scanning scenario. (a) Beam-
pattern results of the proposed algorithm. (b) Beampattern results of SDR
algorithm. (c) Beampattern results of the iterative approximation algorithm.
(d) Beampattern results of the auxiliary variables algorithm. (e) Beampattern
results of the depth-first algorithm.

TABLE III
THE ELEMENT LOCATIONS OF NON-UNIFORM LINEAR ARRAY

IN THE SECOND EXAMPLE

i ri(λ) i ri(λ) i ri(λ) i ri(λ)

1 0.00 10 4.64 19 9.03 28 13.64
2 0.57 11 5.06 20 9.62 29 14.14
3 1.06 12 5.64 21 10.03 30 14.59
4 1.58 13 6.11 22 10.56 31 15.05
5 2.04 14 6.50 23 11.13 32 15.63
6 2.51 15 7.10 24 11.63 33 16.07
7 3.07 16 7.61 25 12.06 34 16.64
8 3.53 17 8.10 26 12.55 35 17.00
9 4.00 18 8.58 27 13.09

TABLE IV
THE RESULTING PSLS AT DIFFERENT SCANNING ANGLES AND RUNNING

TIMES IN THE SECOND EXAMPLE

Proposed [13] [15] [16] [17]

PSL at 10◦ (dB) -22.25 -20.51 -17.92 -15.23 -20.22
PSL at 30◦ (dB) -22.76 -20.61 -18.02 -15.87 -20.40
PSL at 45◦ (dB) -21.64 -20.31 -15.57 -15.13 -20.27

Running time (s) 689.41 419.58 721.41 833.64 7.23

linear array composed of 35 isotropic elements. The exact element
positions {ri}Ni=1 are outlined in Table III. For simplicity, we consider
three beams pointing towards 10◦, 30◦ and 45◦, respectively. The
DRR is constrained to be below ε = 1.60.

Fig. 5 compares the beampatterns obtained by different methods,
while Table IV lists the resulting PSLs at different scanning angles
and the running times. Based on the above results, it can be observed
that compared to the other methods, the proposed algorithm can
achieve a lower PSL under the given DRR constraint.

C. Shaped Beampattern Synthsis With DRR Constraint

In the third example, we assess the performance of the proposed
algorithm for shaped beampattern synthesis. We use an uniform linear
array composed of 40 isotropic elements. In this case, we constrain
the PSL below -15.00dB for sidelobe region |θ| ≥ 13.5◦. The DRR
is constrained to be below ε = 3.00 for the proposed algorithm. Our
goal is to minimize the mainbeam ripple level within the mainlobe
region |θ| ≤ 10◦, subject to the above constraints.

Fig. 6 compares the shaped beampattern results obtained by
different methods, while Table V lists the relevant data. The proposed
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Fig. 6. Shaped beampattern synthesis comparison.

TABLE V
THE RELEVANT DATA IN THE THIRD EXAMPLE

Proposed [13] [15] [16]

DRR constraint 3.00 9.00 6.00 15.00
PSL (dB) -15.00 -15.51 -15.00 -14.77

Ripple level (dB) 0.36 1.96 0.80 2.58
Running time (s) 346.72 268.37 386.49 637.82

TABLE VI
THE CORRESPONDING ACTIVE VSWR IN THE THIRD EXAMPLE

i VSWR i VSWR i VSWR i VSWR

1 1.080 11 1.110 21 1.029 31 1.203
2 1.056 12 1.149 22 1.066 32 1.156
3 1.030 13 1.181 23 1.047 33 1.115
4 1.020 14 1.210 24 1.029 34 1.083
5 1.066 15 1.191 25 1.067 35 1.026
6 1.012 16 1.144 26 1.053 36 1.011
7 1.009 17 1.104 27 1.149 37 1.028
8 1.066 18 1.076 28 1.147 38 1.085
9 1.052 19 1.005 29 1.154 39 1.055

10 1.057 20 1.007 30 1.182 40 1.139

algorithm can be observed to not only satisfy the PSL constraint
but also demand a relatively short running time, while attaining the
minimal ripple level even under the strictest DRR constraint. On
the other hand, since the requirement of additional correction, the
resulting PSL of the auxiliary variables algorithm is slightly raised.
The above results confirm the effectiveness and superiority of the
proposed algorithm. With the same antenna configuration as in the
first example, we conduct a full-wave simulation, and the result is
presented in Fig. 6. Although there is an increase in sidelobe level
especially in the angular regions that are far from the mainlobe, the
full-wave simulation result is generally acceptable. Accordingly, the
active voltage standing wave ratio (VSWR) is shown in Table VI
for reference. Also, note that the depth-first algorithm is unable to
solve the shaped beampattern synthesis problem and consequently
not shown in this scenario.

V. CONCLUSIONS

In this paper, we have proposed a sequential convex optimization
algorithm for beampattern synthesis with DRR constraint. The DRR
constraint has been reformulated and simplified, enabling the uti-
lization of sequential convex optimization to address the non-convex
beampattern synthesis problem. The proposed algorithm has proven
to be not only easy to implement, but also highly effective on focused
or shaped beampatterns. Both theoretical and simulation results have
confirmed that the proposed algorithm does not rely on the initial
setting and exhibits good convergence performance. Representative
simulations have been conducted to show the effectiveness and
superiority of the proposed algorithm.
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