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In this paper, two low computational complexity accurate array response control algorithms for 
large-scale antenna array are presented. The first proposed algorithm is an Improved Weight vector 
ORthogonal Decomposition (I-WORD) approach. We extend the WORD method by selecting the non-
negative coefficient as the ultimate solution, and thus the ultimate weight vector will be in an 
exact form. Therefore, the proposed I-WORD algorithm has no longer a selection procedure and has 
low computational complexity compared with the WORD algorithm. Moreover, to achieve multi-point 
accurate array response control, we further develop a Multi-point control based on I-WORD (MI-WORD) 
algorithm. The MI-WORD algorithm is able to control multi-point response simultaneously by finding the 
weight vector from the intersection of weight vector sets with a new matrix constructing manner, which 
is different from the multi-point accurate array response control (MA2RC) method. Both the proposed 
algorithms can be applied to adjust the response accurately to synthesize the beampattern. Furthermore, 
the proposed MI-WORD method has the advantage of low computational complexity, especially when the 
number of array antennas is large. Simulation results show the effectiveness of the two algorithms and 
the property of low complexity of the MI-WORD algorithm for beampattern synthesis.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Array signal processing has attracted significant attention from 
researchers for decades. An important branch of array signal pro-
cessing is beampattern synthesis [1–3]. The problem of beampat-
tern synthesis is to design a weight vector for antenna array, which 
can make the array beampattern meet some specific requirements. 
For example, the low uniform sidelobe is designed to against the 
interferences in the radar system. Moreover, antenna arrays with 
a narrow main beam and high gain are urgently demanded in 
modern applications. Large phased antenna arrays have been effec-
tively used in realizing highly directional beamforming [4]. Thus, 
beampattern synthesis for large-scale antenna arrays of which the 
number of elements is large also has been researched [5].

Plenty of works have been devoted to beampattern synthesis in 
recent years. A weight vector calculated with the theory of Cheby-
shev polynomials was presented in [6], which can achieve the 
same level for all the sidelobes when the beam width is minimum. 
However, its applications are limited to uniform antenna arrays. 
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As a result, several algorithms have been proposed to solve the 
beampattern synthesis problem for nonuniform antenna arrays. For 
example, a simple iterative solution of linearly constrained least 
squares method was developed in [7]. In [8], the problem of beam-
pattern synthesis was formed as a quadratic program problem, 
which could synthesize the pattern of arbitrary array to any ap-
propriate beampattern. The element beampattern in an unequally 
spaced array was considered as the beampattern radiated by a sub-
array of some equally spaced virtual elements in [9]. The synthesis 
of arbitrary sparse planar arrays based on the two-dimensional 
unitary matrix pencil was studied in [10].

Besides, a number of approaches based on global optimization 
have been developed for nonuniform arrays [11–13]. A genetic 
algorithm was applied to the beampattern synthesis for thinned 
arrays in [11]. In [12], the particle swarm optimization was imple-
mented to handle arbitrary nonlinear cost functions. To synthesize 
beampattern for an unequally spaced array, simulated annealing 
was applied in [13]. However, all the global search algorithms 
bring heavy computation loads to the problem of beampattern syn-
thesis.

Different from the global search approaches, a class of meth-
ods based on convex optimization techniques [14–16] have been 
presented in the past several years. In [17], Lebret and Boyd have 
expressed some antenna array beampattern synthesis problems as 
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convex optimization problems, which can be solved by interior-
point method. A method based on the second-order cone pro-
gramming (SOCP) was developed in [18], which was applicable to 
general beampattern synthesis problem for arbitrary geometry ar-
ray. In [19], a semidefinite programming has been presented to 
design the robust array beampattern, which can synthesize beam-
pattern with the uncertainties, for example, array gain uncertain-
ties. In addition, a novel beampattern synthesis method based on 
the semidefinite relaxation was developed to focus energy in the 
desired range-angle domain in [20].

Recently, some quite comfortable and effective methods have 
been researched. The fast Fourier transform (FFT) technique has 
been applied to synthesize unequally spaced arrays in [9,21]. Then, 
an extend FFT method as iterative spatiotemporal Fourier trans-
form has been used to design filter coefficients for generating 
frequency-invariant beam pattern in [22]. The modified iterative 
FFT technique was also used to synthesize thinned massive array 
for 5G communications in [23]. Besides, synthesizing the beampat-
tern utilizing the differential evolution method also was researched 
in [24,25]. Lately, [26] has presented a differential evolution algo-
rithm to achieve shaped power pattern of a linear dipole array. 
With new encoding mechanism and Cauchy mutation, the differen-
tial evolution algorithm was applied to synthesize large unequally 
spaced planar arrays in [27].

Unfortunately, all algorithms mentioned above cannot flexibly 
control the array response. It has to be completely redesigned the 
weight vector even if only a slight change of the desired pattern 
is needed. When the response at a given direction is needed to be 
adjusted accurately, the weight vector needs to be resolved from 
the beginning. To solve this problem, a scheme called optimal and 
precise array response control (OPARC) which assigns a virtual in-
terference to a direction to control the response level precisely has 
been investigated in [28]. It can only control the response at one 
angle in one step. In addition, a beampattern synthesis method 
based on weight vector orthogonal decomposition (WORD) was 
proposed in [29], which can control the array response accurately 
at a given direction. However, there are two weight vectors ob-
tained by the WORD algorithm, which need a criterion to choose 
one of them as the ultimate weight vector. What’s more, both 
the WORD method and the OPARC method work as point-by-point 
manner when beampattern is synthesized, which adjust the re-
sponse at only one given direction in each iteration. Although 
a multi-point accurate array response control (MA2RC) method 
based on the accurate array response control (A2RC) method has 
been presented in [30] and a multi-point method based on oblique 
projection (OBPJ) has been presented in [31], the computational 
complexity of them is high when the number of elements and the 
number of the directions needed to be controlled are large.

Considering the drawbacks afore-mentioned, this paper is ded-
icated to two low computational complexity and accurate array 
response control algorithms. Firstly, the two weight vectors ob-
tained by the WORD algorithm will be analyzed and the nonpos-
itive one of the solutions would be discarded. Thus, the ultimate 
weight vector will be in an exact form and we present an Im-
proved WORD (I-WORD) algorithm which can omit the selection 
procedure compared with the WORD algorithm. Then, combining 
the MA2RC method, a multi-point response control at one step 
method based on the I-WORD algorithm is under consideration. 
To achieve low computational complexity for large-scale antenna 
array, a new matrix constructing manner leading to low compu-
tational complexity is applied, which is different from the MA2RC 
method in [30]. Therefore, we obtain a low complexity Multi-point 
accurate array response control based on I-WORD (MI-WORD) al-
gorithm. Finally, the proposed MI-WORD algorithm is applied to 
synthesize beampattern for antenna arrays.
2

Fig. 1. Illustration of the weight vector orthogonal decomposition.

The rest of this paper is organized as follows. In Section 2, the 
beampattern synthesis problem is formulated and the WORD al-
gorithm is introduced. The improved WORD algorithm is proposed 
in Section 3. Then, the proposed MI-WORD method is developed in 
Section 4. In Section 5, the application of the MI-WORD method for 
beampattern synthesis is described. Numerical examples are pre-
sented in Section 6. Finally, conclusions are drawn in Section 7.

2. Preliminaries

2.1. Formulation of beampattern synthesis problem

Considering an arbitrary geometry array with N elements, the 
steering vector in direction θ can be expressed as

a(θ) =
[

f1(θ)e− jφ1(θ), · · · , f N(θ)e− jφN (θ)
]T

(1)

where fn(θ) denotes the element pattern, j = √−1 is the imagi-
nary unit, (·)T is the transpose operation and φn(θ) represents the 
phase delay between the nth element and the reference element. 
Generally, we define the complex weight vector for the array as 
w = [w1, w2, · · · , w N ]T. Thus, the far-field array response can be 
given as

P (θ) =
∣∣∣∣ N∑

n=1

w∗
n fn(θ)e− jφn(θ)

∣∣∣∣ = |wHa(θ)| (2)

where (·)∗ and (·)H represent the conjugate and the conjugate 
transpose operation, respectively.

Let us consider Pd(θ) as the desired array response. Then, the 
general beampattern synthesis problem can be stated as finding a 
weight vector w to make the synthesized array response meet the 
desired array response, i.e., P (θ) ≈ Pd(θ), for all θ ∈ [−90◦, 90◦]. 
Therefore, the major problem is how to design the weights for the 
antenna array.

2.2. WORD algorithm

For self-contained, in this subsection, we briefly review the 
WORD scheme presented in [29]. The main idea of the WORD al-
gorithm is that the weight vector is updated based on the vector 
orthogonal decomposition, shown in Fig. 1. In Fig. 1, a(θk+1) is the 
steering vector corresponding to the direction that will be con-
trolled in the k + 1 step and a⊥(θk+1) is the orthogonal vector of 
a(θk+1). It can be seen that the weight vector wk+1 is a linear 
combination of two orthogonal vectors wk,⊥ and wk,‖ with the co-
efficients 1 and βk+1, respectively. Note that k means the previous 
step in which the response at θk has been controlled and k + 1
denotes the current step in which the response at θk+1 will be 
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adjusted. In addition, the value of k herein is fixed when the algo-
rithm is presented. No iteration is needed to find wk+1 for a given 
k. In [29], wk,⊥ and wk,‖ are defined as

wk,⊥ = P⊥
[a(θk+1)]wk, wk,‖ = P[a(θk+1)]wk (3)

where P[a(θk+1)] and P⊥
[a(θk+1)] are the orthogonal projection and 

the orthogonal complementary projection matrix onto the column 
space of a(θk+1), respectively.

For a given wk , the weight vector can be updated as

wk+1 = [wk,⊥ wk,‖][1 βk+1]T, (4)

where βk+1 has two solutions βa and βb according to the WORD 
method.

Then, one of the solutions βa or βb which one can minimize the 
variation function F (β) = ‖P⊥[w(k)]wk+1/‖wk+1‖2‖2

2 will be selected. 
It is noticed that the appropriate β is determined by a selection in 
the WORD approach. This selection procedure motivates us to de-
velop an improved WORD algorithm, which has a definite solution 
and does not need to do the selection anymore.

3. The proposed improved WORD algorithm

In this section, we dedicate to present an improved WORD al-
gorithm which does not need to select ultimate β from βa and βb
but calculates the weight vector with an exact form.

For clarity, two solutions of the βk+1 are written below as

βk+1,a = −Re(B(1,2))+d

B(2,2)
,βk+1,b = −Re(B(1,2))−d

B(2,2)
(5)

where d = √[Re(B(1,2))]2 − B(1,1)B(2,2), Re(·) returns the real 
part of a complex number, and B is given by

B =
[

−ρk+1|wH
k,⊥a(θ0)|2 −ρk+1wH

k,⊥a(θ0)aH(θ0)wk,‖
−ρk+1wH

k,‖a(θ0)aH(θ0)wk,⊥ |wH
k,‖a(θk+1)|2−ρk+1|wH

k,‖a(θ0)|2
]

,

(6)

where ρk+1 = |P (θk+1)|2/|P (θ0)|2 denotes the desired (normal-
ized) response level at θk+1 with main beam axis θ0.

Then, these two solutions, i.e., βa and βb will be analyzed. To 
begin with, B(1, 1) and B(2, 2) in (5) will be analyzed. It is as-
sumed that 0 ≤ ρk+1 ≤ 1. Thus, we have

B(1,1) = −ρk+1|wH
k,⊥a(θ0)|2 ≤ 0. (7)

Considering wk,‖ in (3), we can deduce that

|wH
k,‖a(θk+1)|2

ρk+1|wH
k,‖a(θ0)|2

= |aH(θk+1)a(θk+1)|2
ρk+1|aH(θk+1)a(θ0)|2 . (8)

Recalling that 0 ≤ ρk+1 ≤ 1 and aH(θk+1)a(θk+1) > aH(θk+1)a(θ0), 

(8) can be further derived that 
|wH

k,‖a(θk+1)|2
ρk+1|wH

k,‖a(θ0)|2 ≥ 1. Thus, we can get

B(2,2) = |wH
k,‖a(θk+1)|2 − ρk+1|wH

k,‖a(θ0)|2 ≥ 0. (9)

Then, combining (7) and (9), we can obtain

B(1,1)B(2,2) ≤ 0. (10)

So, it is obvious that

d =
√

[Re(B(1,2))]2 − B(1,1)B(2,2) ≥ |Re(B(1,2))|. (11)

Therefore, we can obtain −Re(B(1, 2)) + d ≥ 0 and −Re(B(1, 2)) −
d ≤ 0. As we have B(2, 2) ≥ 0, it can be deduced that
3

Fig. 2. Illustration of weight vectors with βk+1,a ≥0 and βk+1,b ≤0.

Fig. 3. The beampatterns synthesized with βk+1,a and βk+1,b . A ULA with N = 16
and θ0 = 50◦ . Adjust the array response at θk+1 = 70.9◦ to −30 dB as wk = a(θ0).

βk+1,a ≥ 0 ≥ βk+1,b. (12)

In fact, the weight vector in (4) can be expressed as

wk+1 = wk,⊥ + βk+1wk,‖. (13)

It shows that βk+1 is a weighting factor on wk,‖ in wk+1. As is 
known, wk,‖ is the parallel component of wk . Therefore, βk+1 actu-
ally controls the similarity between wk+1 and wk , which provides 
similar functionality as shown by variation function F (β). To min-
imize the variation of the beampatterns synthesized by wk+1 and 
wk , the similarity of wk+1 and wk should be kept as high as pos-
sible.

As βk+1,b is nonpositive, it will make the parallel components 
of wk+1 and wk be in the approximate opposite direction, result-
ing that the direction of the weight vector wk+1 will be reversed 
during the update process. Fortunately, as βk+1,a ≥ 0, the paral-
lel components of weight vectors in adjacent iteration are always 
in the approximate same direction. For further explanation, the 
weight vectors obtained with βk+1,a and βk+1,b , are depicted in 
Fig. 2. From Fig. 2, as βk+1,a ≥ 0 ≥ βk+1,b , it can be found that the 
angle between wk+1,a and wk will be always smaller than that be-
tween wk+1,b and wk , which demonstrates that the similarity of 
wk+1,a and wk is much higher than that of wk+1,b and wk .

The perspective of beampattern is also shown in Fig. 3. It can be 
seen that the array responses at θk+1 = 70.9◦ both are accurately 
adjusted to −30 dB by the weight vector calculated with βk+1,a
and βk+1,b . However, the sidelobe region near the controlled di-
rection synthesized with βk+1,b is quite different from the initial 
beampattern. On the contrast, the beampattern synthesized with 
βk+1,a has a good shape which is similar to the initial beampat-
tern.
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Fig. 4. Illustration of intersection Wk+1 =Wk+1,1
⋂
Wk+1,2.

According to the above analysis, we can discard βk+1,b and let 
βk+1,a be the ultimate solution. Thus, the ultimate weight vector 
can be computed as

wk+1,a = wk,⊥ + βk+1,awk,‖. (14)

Therefore, the ultimate weight vector is an exact form and can 
be directly calculated by (14) which do not need to make a judge-
ment with variation function F (β) anymore. Compared with the 
WORD scheme, the I-WORD approach can omit the selection pro-
cedure without performance loss. Note that the I-WORD algorithm 
is intended to find one new weight vector wk+1 for a given k with 
known wk , which controls one single point array response and is 
an important step in the later proposed method.

4. The proposed low complexity multi-point control method

In the preceding section, we have presented the I-WORD algo-
rithm, which adjusts the array response at a single direction in 
each step. In this section, a low complexity Multi-point accurate 
array response control based on I-WORD (MI-WORD) method will 
be developed.

4.1. The proposed low complexity MI-WORD algorithm

In [30], a MA2RC method which can achieve multi-point ac-
curate array response control has been presented. It makes use of 
the intersection of several weight vector sets. The formation of two 
weight vector sets and their intersection are shown in Fig. 4.

According to [30], there are series of vector that can achieve the 
same response level at ρk+1,m as wk+1,m . The set of the weight 
vectors for array response control at a single direction is estab-
lished as

Wk+1,m ≡ R([Vk+1,m wk+1,m]) \Vk+1,m (15)

where Vk+1 is a full column rank matrix whose column space is 
expressed as R⊥(A(θ0, θk+1,m)), Vk+1,m is defined as Vk+1,m ≡
R(Vk+1,m), where R(·) and R⊥(·) give the column space and the 
orthogonal complement space of a matrix, respectively. It defines 
A(θ0, θk+1,m) ≡ [a(θ0) a(θk+1,m)]. The weight vector wk+1,m is ob-
tained by using the I-WORD method for the (k + 1)th step, i.e.,

wk+1,m = wk,⊥ + βk+1,mwk,‖ (16)

which can independently adjust the response at a single direction 
θk+1,m to the desired value. Note that, wk+1,m herein will be calcu-
lated by the I-WORD method in this paper, which is different from 
the method in [30].
4

Therefore, the unique weight vector controlling M points at one 
step should lie in the intersection of the M sets. For the sake of 
easy understanding, Wk+1,1

⋂
Wk+1,2 has been shown in Fig. 4.

According to the linear algebra theory [32], the problem of 

finding a weight vector w̃k+1 in 
M⋂

m=1
Wk+1,m , can be converted 

to obtaining these appropriate vectors [bT
m cm] ∈C(N−1) , for m =

1, · · · , M , satisfying

w̃k+1 = [U12 wk+1,1][bT
1 c1]T = [U22 wk+1,2][bT

2 c2]T = · · ·
= [UM2 wk+1,M][bT

M cM]T,
(17)

where Um2 is composed of the last N − 2 columns of the unitary 
matrix which is obtained from the SVD operation on A(θ0, θk+1,m).

Different from the MA2RC method in [30], we will present 
a new matrix construction manner to solve (17), resulting in a 
low computational complexity algorithm in this paper. The new 
scheme will be shown as following.

Considering cm �= 0 and m = 2, · · · , M , the equation (17) is 
equivalent to

[U12 wk+1,1][bT
1 c1]T = [Um2 wk+1,m][bT

m cm]T. (18)

According to the linear algebra theory, we know

R([Um2 wk+1,m]) = N⊥([Um2 wk+1,m]T) (19)

where N (·) returns the null space of matrix. Hence, we have

[U12 wk+1,1][bT
1 c1]T ∈ N⊥([Um2 wk+1,m]T). (20)

Then, the problem in (17) can be stated as

find [bT
1 c1]T ∈C(N−1) (21)

s.t. [U12 wk+1,1][bT
1 c1]T ∈ N⊥([Um2 wk+1,m]T)

for m =2, · · ·,M

c1 �= 0.

Proceeding, the constraint in (21) should be analyzed. In 
order to express N⊥([Um2 wk+1,m]T), the SVD operation on 
[Um2 wk+1,m] can be applied. Let Ũm ∈ CN×N be its unitary ma-
trix composed of the left-singular vectors. Thus, Ũm is a matrix 
of full column rank and it can be divided into two submatrices 
composed with the first N − 1 columns and the last column, re-
spectively. It can be described as

Ũm =[ũ1 · · · ũN−1︸ ︷︷ ︸ ũN︸︷︷︸].
Dm dm

(22)

According to the SVD theory, it is known that dm can be the ba-
sis vector of N ([Um2 wk+1,m]T). Combining with (20), we find that 
dm is orthogonal to [U12 wk+1,1][bT

1 c1]T, which can be expressed 
as

dH
m[U12 wk+1,1][bT

1 c1]T = 0. (23)

Therefore, the problem of (21) can be formulated as

find [bT
1 c1]T ∈C(N−1) (24)

s.t. dH
m[U12 wk+1,1][bT

1 c1]T = 0

for m =2, · · ·,M

c1 �= 0.
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For simplicity, let’s define

gT
m ≡ dH

m[U12 wk+1,1] ∈C1×(N−1)

G ≡ [g2 g3 · · · gM]T ∈C(M−1)×(N−1)
(25)

where m =2, · · ·, M. Thus, (24) can be simplified as

find [bT
1 c1]T ∈C(N−1) (26)

s.t. G[bT
1 c1]T = 0

c1 �= 0.

Then, to be more easier to solve (26), those constraints will be 
more simplified. Considering c1 �= 0, we have G[b̃T

1 1]T = 0 where 
b̃T

1 = bT
1/c1. Hence, the problem of (26) is equivalent to the opti-

mization problem stated as

find b̃T
1 ∈ C(N−2) (27)

s.t. G[b̃T
1 1]T = 0.

To obtain the analytical solution to (27), the matrix G ∈
C(M−1)×(N−1) is partitioned into block matrices, expressed as

G = [T t] (28)

where T ∈C(M−1)×(N−2) is composed with the first N−2 columns 
and t ∈C(M−1) represents the last column of G. They can be given 
by

T =

⎡⎢⎢⎢⎢⎣
dH

2 U12

dH
3 U12
...

dH
MU12

⎤⎥⎥⎥⎥⎦ , t =

⎡⎢⎢⎢⎢⎣
dH

2 wk+1,1

dH
3 wk+1,1

...

dH
Mwk+1,1

⎤⎥⎥⎥⎥⎦ . (29)

Substituting (28) into the constraint condition in (27), we can 
obtain the general solution to the optimization problem as

b̃T
1 = −T†t + z, ∀z ∈ N (T), (30)

where † is the pseudo-inverse operation.
On account of the equivalence between (26) and (27), the solu-

tion to (26) can be obtained as

[bT
1 c1]T =c1

[−T†t + z
1

]
, c1 �=0,∀z ∈ N (T). (31)

Thus, the weight vector w̃k+1 in (17) can be expressed as

w̃k+1 = [U12 wk+1,1][bT
1 c1]T

= c1[U12 wk+1,1]
[−T†t + z

1

]
, c1 �=0,∀z ∈ N (T)

(32)

which can adjust responses at all M directions to the desired level 
at one step. It’s remarkable that the number of the picked di-
rections cannot exceed N − 1 and it must be guaranteed that 
a(θ0), a(θk+1,1), · · ·, a(θk+1,M) are linearly independent to ensure 
equation (17) solvable.

Remark: The proposed MI-WORD algorithm can impose a 
derivative constraint on the direction of beam center to avoid the 
shifting of the main beam axis, which is similar to M2A2RC algo-
rithm in [30]. As it’s not the major work in this paper, and for 
brevity, the final weight vector which has been considered the 
beam shifting can be directly expressed as

ŵk+1 = c1[� wk+1,1][C†k + cn 1]T, c1 �= 0, ∀cn ∈ N (C), (33)

of which the details of derivation can be seen in the Appendix A.
5

4.2. Computational complexity analysis

From MA2RC algorithm in [30] and the proposed MI-WORD 
algorithm in the preceding subsection, we find that solving the 
weight vector w̃k+1 occupies the major complexity, especially cal-
culating T†t. Thus, we only focus on the computational complexity 
of T†t.

As afore-mentioned, in MI-WORD algorithm, T ∈ C(M−1)×(N−2)

and t ∈C(M−1) , so the computational complexity of T†t is O(2(M−
1)(N−2)2 + (N−2)3 + (M−1)(N−2)). However, compared with 
MA2RC algorithm, an additional SVD operation must be taken on 
[Um2 wk+1,m] ∈CN×(N−1) , which has O(2N(N−1)2) computational 
complexity. Totally, the computational complexity in the pro-
posed approach is O(2(M−1)(N−2)2 + (N−2)3 + (M−1)(N−2) +
2N(N−1)2). In fact, the number of the directions needed to be 
controlled is always smaller than that of the elements, i.e., M <N
according to the Remark 1 in [30]. Hence, the computational com-
plexity can be approximately to O(2N(N−1)2) when N is large. 
With the same observation, the complexity of MA2RC algorithm 
can be approximately to O(2N(M−1)(N−2)2). The complexity of 
the OBPJ algorithm in [31] is O(M2N2). It is noteworthy that 
M beam peak angles where the response differences (from the 
desired levels) are relatively large will be chosen for sidelobe syn-
thesis and we will make the value of M get as large as possible 
to reduce iteration when the beampattern is synthesized. For a 
large N, M will become large too. According to the above analy-
sis, we can find that the proposed MI-WORD approach has lower 
computational complexity than the MA2RC method, especially for 
large-scale antenna array. When the array elements num N and 
the number of directions needed to be controlled M are large 
enough, the computational complexity of the proposed MI-WORD 
method will be smaller than that of the OBPJ method. Thanks to 
the new matrix construction manner, the MI-WORD algorithm has 
low complexity compared with the MA2RC algorithm and the OBPJ 
method.

5. Beampattern synthesis using the proposed MI-WORD 
algorithm

In the above sections, the I-WORD and MI-WORD algorithms 
have been presented. Following, the application of the proposed 
MI-WORD algorithm to beampattern synthesis will be introduced. 
To achieve synthesis, the MI-WORD algorithm is iterative to con-
trol multi-point response, where the I-WORD algorithm obtains the 
weight vector for each point by a single step.

To be specific, we set a(θ0) as the initial weight vector w0 and 
obtain the beampattern L0(θ). Let Ld(θ) denote the desired beam-
pattern. After setting k = 0, the iterative process will be started. 
In the (k + 1)th step, M directions needed to be adjusted should 
be determined, according to the previous beampattern Lk(θ) and 
the desired beampattern Ld(θ). M beam peak angles where the re-
sponse differences (from the desired levels) are relatively large will 
be chosen for sidelobe synthesis and we will make the value of M
get as large as possible to reduce iteration. More details about the 
direction selection strategy can be found in [30] and [31].

Next, the desired normalized array response level ρk+1,m at di-
rection θk+1,m should be figured out. Therefore, the corresponding 
weight vector wk+1,m is calculated by using the I-WORD algorithm 
with (16). Then, the weight vector w̃k+1 which controls M angles 
response can be computed by (32). Thus, the corresponding nor-
malized array response can be obtained. Then, check whether the 
beampattern is satisfactorily synthesized. If not, set k = k + 1 and 
repeat the above steps until the synthesized beampattern meets 
the requirements of the desired beampattern. Otherwise, output 
the ultimate weight vector w̃k+1 and synthesized beampattern. The 
above steps are summarized in Table 1.
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Table 1
Summary of MI-WORD method for beampattern synthesis.

Input k = 0, θ0, w̃0 = a(θ0), L0(θ), Ld(θ)

Step 1. Determine Mk+1 angles θk+1,m by comparing Lk(θ)

with Ld(θ) and the corresponding steering vector
a(θk+1,m), for m = 1, · · · , Mk+1.

Step 2. Figure out the desired response level ρk+1,m at θk+1,m .
Determine B in (6) and calculate βk+1,a in (5). Then,
calculate wk+1,m with (16). Repeat this step until
find all Mk+1 weight vectors via the I-WORD method.

Step 3. Compute w̃k+1 by (32) and the normalized response can
be obtained as Lk+1(θ) = |w̃H

k+1a(θ)|2/|w̃H
k+1a(θ0)|2.

Step 4. Setting k = k + 1, go to Step 1 unless the normalized
beampattern Lk+1(θ) satisfies Ld(θ).

Output w̃k+1 and the final normalized beampattern Lk+1(θ).

6. Simulations

In this section, the proposed I-WORD algorithm will be firstly 
simulated. Then, the effectiveness and the property of low com-
putational complexity of the proposed MI-WORD algorithm will 
be illustrated with several examples. For comparison, the convex-
optimization-based method (labelled as “convex method” follow-
ing) in [17] and the MA2RC method are simulated if available. Note 
that all the examples about the running time of the method are 
simulated on a computer with Intel Core CPU i7-10700 at 2.9 GHz.

6.1. Illustration of the proposed I-WORD algorithm

To illustrate the proposed I-WORD algorithm, a linear array 
with N = 60 nonuniformly spaced elements is considered in this 
subsection. The element locations are given in Table 2. The desired 
sidelobe response is −30 dB with θ0 = −30◦ . For comparison, 100
iterations will be taken with the weight vector calculated by βa

and βb , respectively.
The comparison results are shown in Fig. 5. In Fig. 5(a), the first 

sidelobe peak on initial beampattern is chosen to be controlled and 
their responses on both beampattern synthesized with βa and βb
are adjusted to −30 dB. The beampattern synthesized with βa still 
keep it as the first sidelobe while it is changed in the beampattern 
synthesized with βb . The beampattern variation resulting from βb
is larger than that from βa . From Fig. 5(b) and Fig. 5(c), we can 
see that both the weights obtained with βa and βb can accurately 
adjust response level to the desired level. However, the response 
levels in the region near −85◦ and 85◦ , marked by an ellipse in 
these two figures, rise up alternately on the beampattern obtained 
with βb . Contrasted with that, the beampattern obtained with βa

shows a good downward iteration trend. Moreover, the beampat-
tern synthesized by βa almost satisfies the desired pattern at the 
42th step. The resulting weights obtained with βa (with 100 itera-
tion steps) are specified in Table 2.

To give a perspective of iteration, we define the max differ-
ence sidelobe level between the resulting beampattern and the de-
sired beampattern as MDL = max{L(θ) − Ld(θ)|θ ∈ �s}, where �s

denotes the sidelobe region. As shown in Fig. 6, the MDL obtained 
with βa can converge faster than that obtained with βb , which in-
dicates that βa has higher iteration efficiency than βb .

6.2. Uniform sidelobe beampattern synthesis

In this subsection, the effectiveness of the proposed MI-WORD 
algorithm will be firstly illustrated. An uniform linear array (ULA) 
with N = 60 elements will be considered. To avoid grating lobes, 
the array element spacing is set as half wavelength. The beam cen-
ter is θ0 = 20◦ . The desired uniform sidelobe level is designed to 
be lower than −40 dB. The results of beampattern synthesis by 
using the proposed MI-WORD approach are shown in Fig. 7.
6

In Fig. 7(a), there are M = 58 peak sidelobes, which are se-
lected from the beampattern formed with the quiescent weight 
vector w̃0 = a(θ0). At the first step iteration, a weight vector is 
calculated by low complexity MI-WORD algorithm, which can con-
trol the response levels of those directions. As we can see, the 
response levels of those selected directions have been adjusted to 
−40 dB accurately. The proposed algorithm has ability to adjust 
the response levels of multi-directions to the desired levels at one 
step.

Next, at the second iteration, those sidelobe peaks around 
main-lobe, whose response levels still much higher than desired 
values, are selected as other sidelobe peaks. After this step itera-
tion, the whole sidelobe peaks values in current beampattern are 
adjusted to nearby −40 dB, shown in Fig. 7(b).

Then, in Fig. 7(c), we can see that the sidelobe peaks values 
have been further adjusted to the desired values in the third step. 
At this step, the current beampattern almost satisfies the desired 
beampattern. At last, the output beampattern is shown in Fig. 7(d). 
We can find that the sidelobe level of the convex method is higher 
than that of the proposed method, though they are all closed to 
the desired level. Besides, the proposed method performs as at 
least good as the state-of-the-art MA2RC approach.

The process of beampattern synthesis illustrates that the pro-
posed algorithm can control multi-point response levels accurately. 
It also demonstrates that to make the synthesized beampattern 
satisfy the desired beampattern, only few steps should be taken 
by the proposed method.

To show the property of low complexity of the proposed algo-
rithm, an example contrasting the running time with different ar-
ray elements has been simulated among the different methods. In 
this simulation, to have enough sidelobe directions to be controlled 
on the beampattern of large scale array, the desired uniform side-
lobe level is set to −50 dB, specially. The comparisons are shown 
in Fig. 8. It is obvious that the running time of convex method 
is much larger than those of the others method. Otherwise, when 
the array scale is large, the running time of the proposed method 
is much smaller than that of the MA2RC method. When the array 
elements num is larger than 200, the running time of the proposed 
MI-WORD method becomes smaller than that of the OBPJ method. 
These observations are in accordance with our complexity analysis.

To illustrate that the running time varies with the value of M , 
we have simulated these mentioned methods with different M and 
the results are shown in Table 3. We can find that the running time 
will get large as M becomes large. When the array elements num 
N is large enough, for example N ≥ 300, the running time of the 
proposed MI-WORD method is smallest as the M gets large enough 
value. When both M and N are large enough, the running time of 
the proposed MI-WORD method will be the smallest.

6.3. Multibeam beampattern synthesis for nonuniformly spaced linear 
array

Considering the multi-target tracking, multibeam beampattern 
synthesis for a nonuniformly spaced array whose locations are 
same as in Table 2 is considered. The two beams point at −40◦
and 20◦ . We herein design a(20◦) as the initial weight. Then, the 
array response at −40◦ is adjusted to 0 dB by the I-WORD algo-
rithm. Next, the sidelobe response level will be controlled to be 
lower than −30 dB via the MI-WORD algorithm. Finally, we obtain 
a satisfied beampattern with the weights shown in Table 4. The 
beampatterns achieved by the proposed method and other meth-
ods are plotted in Fig. 9. It can be seen that the shapes of these 
three beampattern satisfy the desired pattern, while the corre-
sponding response level for convex method at 24.5◦ is about 0.01
dB higher than the desired value. Under such simulation param-
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Table 2
Element locations of nonuniformly spaced linear array and the weights obtained by I-WORD 
method with βa .

n xn(λ) wn n xn(λ) wn n xn(λ) wn

1 0.00 0.53e+ j0.008 21 9.95 1.10e+ j0.089 41 20.02 1.06e− j0.060

2 0.48 0.51e− j1.509 22 10.50 1.10e− j1.538 42 20.49 1.06e− j1.509

3 0.98 0.37e+ j3.127 23 10.97 1.22e− j3.048 43 20.95 1.00e− j3.014

4 1.53 0.34e+ j1.558 24 11.46 1.18e+ j1.645 44 21.51 0.92e+ j1.535

5 1.94 0.36e+ j0.014 25 11.99 1.19e+ j0.052 45 22.03 0.94e− j0.026

6 2.50 0.37e− j1.433 26 12.52 1.30e− j1.597 46 22.52 0.84e− j1.687

7 2.97 0.51e− j3.088 27 12.97 1.26e− j3.106 47 22.97 0.82e− j3.012

8 3.49 0.53e+ j1.542 28 13.48 1.24e+ j1.652 48 23.48 0.75e+ j1.618

9 4.03 0.55e− j0.089 29 14.00 1.32e+ j0.023 49 23.97 0.67e+ j0.120

10 4.52 0.62e− j1.624 30 14.46 1.27e− j1.486 50 24.50 0.72e− j1.508

11 4.98 0.65e− j3.099 31 15.01 1.30e− j3.123 51 24.96 0.55e− j3.121

12 5.46 0.71e+ j1.697 32 15.47 1.30e+ j1.615 52 25.52 0.55e+ j1.636

13 5.97 0.74e+ j0.067 33 15.99 1.22e+ j0.039 53 25.94 0.58e+ j0.148

14 6.50 0.80e− j1.688 34 16.52 1.31e− j1.568 54 26.53 0.44e− j1.705

15 7.02 0.89e+ j3.133 35 16.69 1.24e− j3.123 55 27.02 0.40e+ j3.125

16 7.47 0.92e+ j1.563 36 17.53 1.18e+ j1.515 56 27.50 0.36e+ j1.572

17 8.05 0.89e− j0.135 37 17.79 1.22e+ j0.092 57 27.97 0.32e+ j0.124

18 8.53 1.05e− j1.632 38 18.45 1.18e− j1.412 58 28.49 0.41e− j1.482

19 8.98 0.99e+ j3.131 39 18.98 1.55e− j3.078 59 28.96 0.46e− j3.106

20 9.54 1.03e+ j1.512 40 19.50 1.10e+ j1.574 60 29.48 0.54e+ j1.710

Fig. 5. Beampattern comparison with weights vector calculated by βa and βb . Beampatterns at (a) the 1th step, (b) the 41th step, (c) the 42th step.
eters setting, the proposed algorithm takes the shortest time to 
obtain the satisfied beampattern.

6.4. Beampattern synthesis with nonisotropic elements

A large-scale antenna array with N = 140 nonisotropic mi-
crostrip patch antennas used for the elevation-scanning will be 
7

simulated in this subsection. The E-plane beampattern of the nth 
microstrip patch antenna is described as

fn(θ) = sin(πhnsinθ)

πhnsinθ
cos(π lncosθ) (34)

where hn is the relative thickness of the dielectric to the wave-
length and ln represents the relative length of the patch of the 
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Table 3
The running time with the number of beam position.

N = 80 N = 100 N = 300 N = 600

Method

Time(:s) M

10 40 78 10 50 98 10 150 298 10 300 598

MA2RC 2 7.1 13.5 2.3 10.3 21.7 8.3 122.8 245.3 17.5 571.4 1145.3
OBPJ 0.2 0.3 0.5 0.3 0.4 0.8 1.4 11.2 29.6 3.6 104.2 327.3
MI-WORD 0.1 0.4 0.7 0.2 0.7 1.3 0.8 11.6 24.9 3.1 121.3 242.4

convex 260.5 279.3 834.1 2192.9
Fig. 6. Max difference sidelobe level with iteration steps.

Table 4
The weights obtained by MI-WORD method for nonuniform array.

n wn n wn n wn

1 0.70e+ j1.028 21 0.22e+ j2.788 41 1.29e− j1.915

2 1.08e+ j0.684 22 2.33e− j2.499 42 1.90e+ j0.602

3 0.19e− j2.859 23 0.55e− j2.566 43 1.22e+ j0.285

4 0.69e+ j2.888 24 2.54e− j0.289 44 1.67e+ j2.270

5 0.25e− j0.865 25 0.64e− j0.269 45 1.06e+ j2.547

6 0.92e− j1.210 26 2.71e+ j1.626 46 1.54e− j1.264

7 0.30e+ j1.246 27 0.56e+ j1.895 47 1.16e− j1.698

8 0.93e+ j1.009 28 2.56e− j2.219 48 1.20e+ j0.816

9 0.31e− j3.051 29 1.02e− j2.332 49 1.08e+ j0.607

10 1.23e− j3.058 30 2.70e+ j0.050 50 0.91e+ j3.056

11 0.16e− j0.675 31 1.18e− j0.289 51 0.98e+ j2.784

12 1.60e− j0.894 32 2.85e+ j2.211 52 0.83e− j1.039

13 0.21e+ j0.764 33 0.97e+ j1.962 53 0.84e− j1.346

14 1.62e+ j1.324 34 2.57e− j1.960 54 0.71e+ j1.093

15 0.13e+ j2.586 35 0.95e− j1.983 55 0.74e+ j0.875

16 2.03e− j2.756 36 2.31e+ j0.281 56 0.41e− j2.849

17 0.22e− j1.144 37 1.24e− j0.025 57 0.68e+ j2.960

18 2.16e− j0.619 38 2.15e+ j2.480 58 0.51e− j0.667

19 0.24e+ j1.206 39 1.46e+ j2.221 59 0.98e− j1.070

20 2.39e+ j1.549 40 2.13e− j1.612 60 0.69e+ j1.453

antenna to the wavelength. The number of iteration step is set to 5. 
The results are shown in Fig. 10. The beampatterns of three meth-
ods all can satisfy the desired beampattern. But there exist some 
directions whose response levels on the beampattern obtained by 
convex method are higher than the desired levels. Moreover, the 
running time of the proposed low complexity MI-WORD algorithm 
is 49.2 seconds, which is smaller than 56.1 seconds by MA2RC 
method and 110.8 seconds by convex method. This demonstrates 
that the proposed method can be faster than the MA2RC method 
and the convex method to calculate the ultimate weight vector, 
though the final beampattern can be very similar.
8

Table 5
The coefficients between nine adjacent elements.

h1 1 h4 0.4039+j0.1563 h7 0.0903-j0.0825
h2 0.6278-j0.3974 h5 0.3045-j0.0963 h8 0.0473-j0.0412
h3 0.4943+j0.2659 h6 0.1278+j0.1470 h9 0.0086+j0.0037

In order to evaluate the performance of the proposed approach 
with the finite-resolution of the phase shifters, the phase weight-
ings are quantized in discrete phase with different resolutions. The 
resulting beampatterns are depicted in Fig. 11. It can be seen that 
the beampattern with 8-bit resolution is closed to the resulting 
beampattern with full-resolution. As observed, there exist some 
sidelobe peaks at some regions on the beampattern with 5-bit 
resolution which are higher than those on others beampattern. 
Fortunately, the shape of beampattern with 5-bit resolution still 
satisfying that of the desired beampattern.

6.5. Flat-top pattern synthesis for a linear array

In this subsection, the proposed MI-WORD algorithm is utilized 
to synthesize a flat-top pattern to show the effectiveness for syn-
thesizing shaped beam pattern. A 30-element 0.45λ-spaced linear 
array will be considered. We set the mainlobe region as [−9◦, 9◦]
and the sidelobe region as [−90◦, −15◦] and [15◦, 90◦]. The re-
sponse levels in mainlobe are expected to be 0 dB and the desired 
sidelobe level is below −25 dB. A SDR method [14], which is based 
on convex method but overcoming the drawback of the lower 
bound constraint causing non-convex, is tested in this example. 
The initial beampattern and the synthesized beampatterns are de-
picted in Fig. 12. It can be seen that all these methods can obtain 
a satisfactory beampattern. The ripple level of the proposed MI-
WORD algorithm is minimal as it is less than 0.15 dB. Moreover, 
the proposed MI-WORD algorithm needs less iteration steps than 
the WORD method to complete the synthesis procedure. However, 
the SDR method needs dozens of seconds, which is much longer 
than that of the WORD method and the MI-WORD algorithm as a 
few seconds.

6.6. Beampattern synthesis with mutual coupling

In this subsection, the synthesis of a linear array beampattern 
in the presence of mutual coupling will be presented. The number 
of antenna elements in the array is set as N = 100. In this example, 
only nine adjacent elements (containing the current element) on 
each side of the current element will be considered the mutual 
coupling effects. It is assuming that the mutual coupling beyond 
4λ is negligible according to [33]. The coefficients vector of nine 
adjacent elements can be set as h = [h1 h2 · · · h9], while the other 
coefficients are set as 0. The value of h is given in Table 5. The 
number of iteration step is set to 8.

The resulting weightings obtained by the proposed approach 
are listed in Table 6. In Fig. 13, we can find that the proposed 
algorithm can achieve the desired beampattern perfectly and the 
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Fig. 7. Simulation results for beampattern synthesis via MI-WORD. Beampatterns at (a) the first step, (b) the second step, (c) the third step. (d) The output beampattern.
Fig. 8. The curve of running time with the number of array elements.

beampattern of the proposed algorithm has the lowest sidelobe re-
sponse level among these three methods. About the running time 
of the program, the proposed algorithm takes 39.7 seconds. On the 
contrast, it takes 44.9 seconds by the MA2RC method and 95.7 sec-
onds by the convex method. So, the running time of the proposed 
method is less than those of the MA2RC method and the convex 
method. Consequently, the effectiveness and the low complexity 
of the proposed MI-WORD approach contrasted with the MA2RC 
method can be demonstrated in this example.
9

Fig. 9. The resulting beampatterns of nonuniform array.

6.7. Beampattern synthesis for two-dimensional array

To show the extensive applicability of the proposed algorithm, 
it is applied to synthesize beampattern for two-dimensional array, 
which is also a kind of large-scale antenna array in a sense. An 
uniform planar array composed of 10 × 10 antennas is considered 
in this example. We define u =sin(θe)cos(θa), v =sin(θe)sin(θa) as 
new variables, where θe and θa represent elevation and azimuth 
angles, respectively. Thus, the desired beampattern can be ex-
pressed as Ld(u, v) shown in Fig. 14(a). The beam points to 
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Fig. 10. Nonuniform sidelobe beampatterns with nonisotropic elements.

Fig. 11. The beampatterns with different phase shifter resolutions.

Fig. 12. The beampatterns with flat-top mainlobe.

(u0, v0) = (−0.5, 0.5). A special region is divided in 	 = {(u, v) |
0.2 ≤ u ≤ 0.9, −0.9 ≤ v ≤ −0.1} and the desired level inside the 
region 	 is set to be lower than −30 dB. The desired level in the 
rest of region is required to be below −15 dB.

The resulting synthesized beampattern is depicted in Fig. 14(b) 
and Fig. 14(c) shows the top view of synthesized beampattern. 
From Fig. 14, it can be known that the sidelobes levels in the re-
10
Table 6
The obtained weights with mutual coupling effect.

n wn n wn n wn

1 0.68e+ j0.430 35 1.67e− j0.375 69 1.60e− j2.147

2 0.33e− j2.144 36 1.72e+ j2.349 70 1.56e+ j0.567

3 0.26e+ j1.438 37 1.75e− j1.218 71 1.50e− j2.986

4 0.28e+ j3.028 38 1.81e+ j1.500 72 1.44e− j0.269

5 0.25e− j0.714 39 1.85e− j2.057 73 1.38e+ j2.460

6 0.33e+ j2.514 40 1.88e+ j0.657 74 1.32e− j1.092

7 0.43e− j1.061 41 1.91e− j2.910 75 1.28e+ j1.622

8 0.27e+ j1.564 42 1.94e− j0.185 76 1.25e− j1.932

9 0.31e− j2.056 43 1.96e+ j2.532 77 1.19e+ j0.798

10 0.48e+ j0.744 44 2.00e− j1.029 78 1.14e− j2.788

11 0.46e− j2.814 45 2.01e+ j1.695 79 1.10e− j0.073

12 0.51e− j0.103 46 2.02e− j1.869 80 1.03e+ j2.627

13 0.56e+ j2.602 47 2.06e+ j0.849 81 0.96e− j0.940

14 0.57e− j1.011 48 2.07e− j2.712 82 0.89e+ j1.806

15 0.65e+ j1.722 49 2.07e− j0.002 83 0.81e− j1.741

16 0.70e− j1.785 50 2.08e+ j2.724 84 0.77e+ j0.974

17 0.71e+ j0.919 51 2.07e− j0.840 85 0.76e− j2.536

18 0.78e− j2.641 52 2.07e+ j1.875 86 0.71e+ j0.222

19 0.84e+ j0.094 53 2.07e− j1.682 87 0.71e+ j2.911

20 0.90e+ j2.789 54 2.05e+ j1.044 88 0.66e− j0.658

21 0.96e− j0.761 55 2.05e− j2.523 89 0.62e+ j1.927

22 0.99e+ j1.970 56 2.04e+ j0.197 90 0.60e− j1.638

23 1.04e− j1.626 57 2.02e+ j2.917 91 0.48e+ j1.067

24 1.11e+ j1.103 58 2.01e− j0.647 92 0.32e− j2.455

25 1.15e− j2.442 59 1.99e+ j2.073 93 0.25e+ j0.134

26 1.20e+ j0.274 60 1.95e− j1.459 94 0.30e− j2.869

27 1.27e+ j3.001 61 1.92e+ j1.219 95 0.28e+ j0.095

28 1.32e− j0.564 62 1.89e− j2.334 96 0.44e+ j2.658

29 1.38e+ j2.145 63 1.84e+ j0.389 97 0.30e− j0.948

30 1.44e− j1.408 64 1.81e+ j3.106 98 0.59e+ j1.032

31 1.48e+ j1.311 65 1.77e− j0.450 99 0.53e− j2.411

32 1.53e− j2.264 66 1.74e+ j2.268 100 0.36e− j0.648

33 1.58e+ j0.462 67 1.71e− j1.296

34 1.62e− j3.096 68 1.66e+ j1.426

Fig. 13. Beampattern synthesis with mutual coupling effect.

Table 7
The running time with different array (TIME:s).

array size convex method MA2RC method proposed method
10 × 10 105.2 1.2 0.7
15 × 15 206.7 11.4 5.9
20 × 20 427.9 143.2 56.7

gion 	 can be adjusted to the desired values as well as outside of 
the special region. It indicates that this proposed algorithm is also 
effective when the array is 2-D antenna array.

Moreover, the comparison of running time among different 
method is shown in Table 7. The unit of the time is second, and 
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Fig. 14. Beampattern synthesis with a 2-D planar array. (a) The desired 2-D beampattern. (b) The 2-D synthesized beampattern. (c) Top view of the 2-D synthesized 
beampattern.
the sizes of array are set as 10 × 10, 15 × 15 and 20 × 20 respec-
tively. As seen from Table 7, the proposed method takes the least 
time to converge to the desired beampattern.

7. Conclusions

In this paper, we have proposed a low computational com-
plexity multi-point accurate array response control algorithm for 
beampattern synthesis. After the analysis of the two solutions in 
WORD algorithm, we can discard the weight vector calculated with 
the nonpositive coefficient and obtain the I-WORD algorithm. The 
proposed I-WORD algorithm can omit the selection procedure in 
the WORD algorithm. Then, based on the I-WORD algorithm, the 
proposed MI-WORD method is developed by finding the intersec-
tion of weight vector sets. A low dimension matrix is constructed 
with SVD of matrix formed by weight vector set, which is differ-
ent from the MA2RC method and leads to the low computational 
complexity of the MI-WORD algorithm. The simulations results 
show the effectiveness and the low complexity of the proposed 
method.
11
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Appendix A

From the proposed low complexity MI-WORD algorithm, we 
know that any weight vector which can control multi-point re-
sponse can be expressed as

w = c1[U12 wk+1,1][b̃T
1 1]T

s.t. Tb̃T = −t, c �= 0.
(A.1)
1 1



W. Peng, X. Zhang, Z. He et al. Digital Signal Processing 117 (2021) 103152
To make sure that w has the ability to avoid the possible beam 
center shift, the following derivative constraint has to be added in 
(A.1)

Re[wHd(θ0)a(θ0)w] = 0 (A.2)

where d(θ0) ≡ ∂a(θ)
∂(θ)

|θ=θ0 . Considering aH(θ0)U12 = 0, the derivative 
constraint can be rewritten as

Re[b̃H
1 p] = γ (A.3)

where

p = UH
12d(θ0)aH(θ0)wk+1,1

γ = −Re[wH
k+1,1d(θ0)aH(θ0)wk+1,1].

(A.4)

Hence, the problem of multi-point response control with non-
shifting constraint can be stated as

ŵk+1 = c1[U12 wk+1,1][b̃T
1 1]T

s.t. Tb̃T
1 = −t, c1 �= 0,Re[b̃H

1 p] = γ .
(A.5)

Let’s define

Tc ≡
[

Re(T) −Im(T)

Im(T) Re(T)

]
bc ≡ [

Re(b̃T
1) Im(b̃T

1)
]T

tc ≡ [ −Re(tT) −Im(tT)
]T

pc ≡ [
Re(pT) Im(pT)

]T

(A.6)

where Im(·) returns the imaginary part of a complex number. 
Therefore, the constraint on b̃T

1 can be simplified to

Cbc = k (A.7)

where

C = [
TT

c pc
]T

,k = [
tT

c γ
]T (A.8)

Consequently, the weight vector which can avoid main beam 
shifting can be obtained as

ŵk+1 = c1[� wk+1,1][C†k + cn 1]T, c1 �= 0, ∀cn ∈ N (C), (A.9)

where � ≡ [U12 jU12].
More details can be seen in [30].
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