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Abstract— This letter proposes a new approach for knowledge-
aided estimation of structured clutter covariance matrices
(CCMs) in airborne radar systems with limited training data.
First, we model the CCM in space–time adaptive process-
ing (STAP) as a sum of low-rank Kronecker products. We then
apply a permutation operation to convert the Kronecker factors
into linear structures and propose a novel CCM estimation
method under the maximum-likelihood framework. Employing
a proximal gradient algorithm, the proposed method simultane-
ously exploits the knowledge about the clutter and the Kronecker
structure of the CCM. We finally evaluate the performance of
the proposed method using real data from airborne STAP.

Index Terms— Covariance matrix estimation, knowledge
aided (KA), space–time adaptive processing (STAP), sum of
low-rank Kronecker products.

I. INTRODUCTION

SPACE–time adaptive processing (STAP) is an effective
tool for detecting slowly varying targets, especially

when ground clutter with a wide Doppler spectrum is
present [1]–[3]. Accurate estimation of the clutter covariance
matrix (CCM) using training data from range gates close to the
cell under test (CUT) is crucial for STAP. The accuracy of the
CCM estimation depends on the number of homogenous train-
ing measurements, which can be small in practice, especially
in urban, mountain, and other complex scenarios [3], [4].
On the other hand, the dimensionality of the CCM in airborne
radar systems can be very large due to the usage of large
antenna arrays and coherent pulse trains [5], [6]. This leads to
the challenge of small sample supports for high-dimensional
CCM estimation. Signal processing and statistical learning
techniques are exploited to enhance the estimation of CCM,
among which knowledge-aided (KA) and structured CCM
estimators have proven to be effective solutions.

Exploiting a priori information, KA methods can improve
the performance of CCM estimation and adaptive detection for
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synthetic aperture radar imaging, terrain data, digital elevation,
etc. [7]. The Bayesian approach is advocated as an effective
method for KA CCM estimation [8], [9], exploiting a joint
distribution of the CCM and the KA covariance matrix. In par-
ticular, the maximum a priori estimate of the CCM for the
CUT is derived in [9]. It is shown that the estimator amounts
to KA colored loading (KACL) of the sample covariance
matrix (SCM) of the training data [10], [11].

Exploiting the structure of CCM, e.g., the low rankness,
leads to a reduced number of unknown parameters and pro-
vides another approach to address the challenge of insuffi-
cient training data [12]–[15]. In [15], the CCM is modeled
using the Kronecker product of two low-dimensional low-rank
covariance matrices, and maximum-likelihood (ML) estima-
tion exploiting this structure has been proposed. In airborne
radar systems, the CCM can be modeled as a sum of low-
rank Kronecker products [16], [17], which has been confirmed
by the principal component analysis (PCA) [16], [18]. A per-
muted singular value thresholding (PSVT) algorithm has been
proposed to exploit this structure, which leads to a faster
convergence rate than the standard SCM [19].

This letter considers the KA ML estimation of CCM under
the model of Kronecker product expansions. A permutation
operation is adopted to tackle the structure constraint of CCM.
The proposed method has the following features.

1) Adopting the permutation operation turns a sum of
Kronecker products into a sum of vector outer products.

2) The permutation is invertible. For a matrix that has the
structure of vector outer product expansions, the inverse
permutation follows a Kronecker product expansion.

3) The number of large eigenvalues of the permuted CCM,
which account for most of the energy, is smaller than
the original CCM. Therefore, the permutation reduces
the number of unknown parameters to be estimated.

In addition, a relaxation of the ML problem is adopted, which
results in a convex optimization problem [20] to be solved
by a proximal gradient algorithm. The proposed estimator is
evaluated for the STAP application in airborne radar using
real data, which shows notable improvement over traditional
estimators.

The rest of this letter is organized as follows. Section II
describes the structured covariance matrix and formulates the
CCM estimation problem. Section III introduces the proposed
estimator for STAP. Experiments and analysis of the proposed
estimator are given in Section IV. Conclusions are drawn in
Section V.
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II. PROBLEM STATEMENT

A. Structure of Airborne Radar CCM

Consider an airborne radar system that employs an
N-element uniform linear array and M-pulse trains in a
coherent processing interval. Assuming that there are Nc inde-
pendent clutter patches, the received CCM can be described as

Rc =
Nc∑

i=1

ξi
(
�i ◦ ai a

†
i

) ⊗ (
�i ◦ bi b

†
i

)
(1)

where ◦ and ⊗ denote the Hadamard and Kronecker products,
respectively, † is the conjugate transpose, ξi is the power of
the i th clutter patch, ai and bi are the spatial and temporal
steering vectors of the i th clutter patch, respectively, �i is the
taper for the i th clutter patch covariance matrix accounting for
internal clutter motion, and �i characterizes the disturbance
arising from the phase and amplitude errors in the array.

The CCM in (1) can be rewritten as a sum of Kronecker
products, i.e.,

Rc =
Nc∑

i=1

Rai ⊗ Rbi (2)

where {Rai} are N × N the spatial covariance matrices and
{Rbi } are M×M the temporal covariance matrices. Both {Rai}
and {Rbi } are low-rank matrices [17] and they have rank one
when �i and �i are identity matrices. We further assume
that the clutters are sparse in the spatiotemporal domain [21],
and thus Nc is a small number. We refer to Nc (1 ≤ Nc ≤
min(N2, M2)) as the separation rank.

B. CCM Estimation for STAP

In airborne radar systems, the weight vector of the fully
STAP is given by

wopt = R−1
c st (3)

where st denotes the steering vector. In practice, Rc is
unknown and is often estimated by the SCM, i.e.,

S =
L∑

l=1

zlz
†
l (4)

where {zl} are the training samples. The number of training
samples L is usually small in nonhomogeneous environments.
This is particularly true in high-dimensional systems with
large antenna arrays and long pulse trains, leading to the
increasing demand of training data. The ML estimate of R can
be obtained by solving the following optimization problem:

R̂ = arg min
R∈S ′{log det(R) + tr(R−1S)} (5)

where tr(·) denotes the trace and S ′ denotes the set of
Kronecker product expansions defined in (2) where Rai and
Rbi are low-rank matrices. This is a nonconvex problem.

On the other hand, a priori knowledge about the covariance
matrix may be exploited to reduce the requirement of the
training samples. Assume that an approximation M of the

CCM R is available. We make the assumption that R is in
a neighborhood of M, i.e.,

‖R − M‖2
F < ε (6)

where ‖ · ‖2
F defines the Frobenius norm and ε reflects the

degree of similarity. As such, the KA ML estimate R̂ of
the CCM under the Kronecker product expansion structure
constraint is formulated as

R̂ = arg min
R

{log det(R) + tr(R−1S)}

s.t.

{
R ∈ S ′

‖R − M‖2
F < ε.

(7)

III. KNOWLEDGE-AIDED PERMUTED SINGULAR

VALUE THRESHOLDING

In this section, we propose a method to find the solution of
the optimization problem in (7).

A. Permuted Singular Value Thresholding

If only the structure constraint R ∈ S ′ is considered,
a nuclear norm penalization approach [19] may be applied

R̂PSVT = arg min
R

{‖P(R) − P(S)‖2
F + λ‖P(R)‖∗

}
(8)

where ‖A‖∗ = ∑rank(A)
l=1 |σl(A)| denotes the nuclear norm and

σl(A) is the lth largest singular value of A. The invertible
permutation operation P(R) maps the M N × M N matrix R
to a M2 × N2 matrix by setting the (n − 1)M + mth row of
P(R) equal to the vectorization of R(m, n), where R(m, n)
denotes the (m, n)th suboldsymbolatrix of R, i.e., the N × N
suboldsymbolatrix R(m, n) = [R](m−1)N+1:mN,(n−1)N+1:nN .
Fig. 1 illustrates this permutation operator. We can now
rearrange the CCM as [22]

P(Rc) =
Nc∑

i=1

vec(Rai )vec(Rbi )
T . (9)

As such, the sum of Kronecker products’ structure (2) turns
into a sum of vector outer products (9). In addition, a matrix
of the structure in (9) can be mapped into (2) using the inverse
permutation operation P−1(·).

The rearrangement operation is Frobenius norm-invariant,
i.e., ‖P(R)‖2

F = ‖R‖2
F . The solution of (8) has a closed form

that is given by the PSVT operator as

P{R̂PSVT} = SVTλ(P(S))

= U(diag(σ1, . . . , σmin(M2,N2)) − λI)+V† (10)

where U(diag(σ1, . . . , σmin(M2,N2)))+V† is the singular value
decomposition of P(S) and (·)+ � max(·, 0).

B. Knowledge-Aided Estimation

Now consider the KA estimation. The optimization problem
is reformulated as

R̂ = arg min
R

{
log det(R) + tr(R−1S)

+ λ1‖R − M‖2
F + λ2‖P(R)‖∗

}
(11)
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Fig. 1. Illustration of the permutation operation. (a) Original covari-
ance matrix of size 544 × 544. (b) Transpose of the permuted matrix of
size 1156 × 256.

where λ1 is the Lagrange multiplier to account for the con-
straint ‖R − M‖2

F < ε. As λ1 increases, R is closer to M.
In particular, as λ1 → ∞, the solution is R̂ = M. From (10),
a smaller λ2 may lead to a higher rank solution to P{R̂PSVT},
which may keep more principal components of R but is also
more prone to the influence of noise. If λ2 → 0, the solution
to (11) can be approximated as

R̂KACL = S + λ1M
1 + λ1

(12)

which is the same as the KACL CCM. In this letter, we set λ2
equal to the noise power to suppress the influence of noise.

The problem of minimizing log det(R) + tr(R−1S) is not
convex. An approach for tackling this issue is via relax-
ation [20], i.e.,

R̂ = arg min
R

‖R − S‖2
W (13)

where the weighted norm with the weighting matrix W is
defined as

‖X‖W �
√

tr(X†W−1X). (14)

We can further rewrite

‖R − S‖2
W � ‖Hr − s‖2

W � (Hr − s)†W−1(Hr − s) (15)

where s = vec(S), and the vectorization of R is expressed in
terms of a basis matrix H and the weights r following [23],
i.e., vec(R) = Hr. The solution to (13) is then found as Hr̂,
where

r̂ = (W−(1/2)H)⊥W−(1/2)s (16)

where (·)⊥ denotes the matrix pseudoinverse. If the weighting
matrix is chosen as W = RT ⊗ R, the resulting estimator can
achieve the Cramér–Rao bound [12]. Since R is unknown,
we use the SCM to construct the weighting matrix as WS =
ST ⊗ S.

Now the relaxed problem is formulated as

R̂ = arg min
R

{‖R − S‖2
WS

+λ1‖R − M‖2
F + λ2‖P(R)‖∗

}
. (17)

Exploiting the proximal algorithm [24], we propose
Algorithm 1 to find the global minimizer of (17). In
Algorithm 1, τk denotes the step size and can be fixed to a
constant τ < 1. ε is a value small enough to guarantee conver-
gence. {Ui } denotes the running sum of the errors. When the
algorithm converges, {Ui } converges, and R̄ = R1 = R2 = R3.
In Step 3, the minimization problem is solved following the
solution to (13) with H = I, assuming that the CCM is
Hermitian. The PSVT operation in Step 5 guarantees the
Kronecker product structure.

Algorithm 1 Proximal Gradient KAPSVT

1: Initialize U0
1, U0

2, U0
3, and R̄0 to be all-zero matrices. Choose

step sizes τk , where k is the number of iterations. Initialize
k = 0.
2: while ‖R̄k+1 − R̄k‖2

F < ε do
3:

Rk+1
1 = arg min

R

∥∥(1 + τk)R − S − τk(R̄k − Uk
1)

∥∥2
WS

4:

Rk+1
2 = λ1M + τk(R̄k − Uk

2)

λ1 + τk

5:

Rk+1
3 = P−1{SVT λ2

τk

[P(R̄k) − P(Ūk
3)

]}
6: Set

R̄k+1 = 1

3

(
Rk+1

1 + Rk+1
2 + Rk+1

3

)
Uk+1

i = Uk
i + Rk+1

i − R̄k+1, i = 1, 2, 3

7: end while
8: return R̂KAPSVT = R̄k+1

IV. EXPERIMENTS AND ANALYSIS

In this section, the proposed KAPSVT estimator is com-
pared with the KACL, PSVT, and SCM estimators for real
data generated from an airborne radar experiment, with the
parameters listed in Table I. The experiment was conducted
around the mountains on the edge of the Yellow River in
Shaanxi Province on October 13, 2014. The radar system is
equipped with half-wavelength spaced elements and operated
in the side-looking mode at a speed of 120 m/s. The priori
matrix M used for the KA CCM estimation is set as the CCM
estimated using SCM from 1000 samples obtained from a
previous experiment using the same airborne radar, flight path,
and velocity on the same day.

Fig. 2 demonstrates the spatial–temporal clutter spectrum of
the CUT, generated from the SCM estimate of the CCM using
1000 homogenous training samples, which can be regarded as
the theoretical CCM according to [17]. Fig. 3 presents the
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TABLE I

PARAMETER LIST

Fig. 2. Spatiotemporal clutter spectrum of the CUT with a slope of β = 2.82.

Fig. 3. Comparison of the percent of spectrum energy of eigenspectrum and
Kronecker spectrum. The first component of Kronecker spectrum contains
48.79% of the spectrum energy, and the first component of eigenspetrum
contains 18.29% energy.

eigenspectra for the CUT, i.e., the eigenvalues of Rc of the
CUT, and the Kronecker spectrum, i.e., the eigenspectrum of
P (Rc). It is seen that the energy is more concentrated in the
principal eigenvalues for the Kronecker spectrum compared
with the eigenspectrum. This suggests that the permuted CCM
can be represented using fewer principal components and thus
may be estimated with less training data.

Fig. 4 demonstrates the spatiotemporal spectrum of the
CCM estimated by the proposed KAPSVT estimator, with
L = 200, τ = 1, and λ1 = 0.1. It is seen that the estimated
spectrum in Fig. 4 agrees well with the theoretical results
in Fig. 2.

We also use the signal-to-clutter-noise ratio (SCNR) of the
filter output to assess the quality of the estimated CCM, which
is defined as

SCNR = |ŵ†st |2
ŵ†Rcŵ

(18)

Fig. 4. Spatiotemporal clutter spectrum of estimated CCM by KAPSVT with
L = 200, τ = 1, λ1 = 0.1, and λ2 determined by the noise power.

Fig. 5. SCNR performance of the proposed algorithm compared with other
methods with the number of training data L = 200.

Fig. 6. SCNR performance as a function of the number of training data.

where ŵ is the estimated filter constructed using the
estimated CCM. The clutter-to-noise ratio is about 20 dB in
the experiments. Fig. 5 shows the SCNR for the optimal
estimator, the proposed estimator, the KACL, PSVT, and
SCM estimators. The results show that the KA algorithms
significantly outperform alternative estimators. The proposed
KAPSVT estimator, which exploits the structure of CCM, can
further improve the SCNR, especially for low-speed regimes.

Fig. 6 shows the SCNR performance versus the number of
training data. The proposed estimator generally outperforms
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Fig. 7. SCNR performance of the proposed algorithms under different λ1
with τk = 0.1, L = 200, and λ2 determined by the noise power.

other estimators at different L. The parameter λ1 plays an
important role in the proposed algorithm. The performance
with different λ1 is depicted in Fig. 7. The SCNR with the
KAPSVT estimator is approximate to the SCNR with the
PSVT estimator when λ1 approaches zero. If λ1 is larger, e.g.,
λ1 = 100, the a priori matrix M plays a more significant
role for the KA estimator and the current training data are
less exploited, which can also result in significant performance
loss. Automatically choosing λ1 is left for future work.

V. CONCLUSION

In this letter, we study the estimation of the structured CCM
in airborne STAP, which is a sum of low-rank Kronecker
products. The proposed KAPSVT method incorporates the
training data, KA covariance matrix, and structure of the CCM
into the ML estimation, and a proximal algorithm is designed
to find the estimator. An invertible permutation operation is
exploited to transform the Kronecker product constraint into a
linear constraint. It has been shown by real data experiments
that the CCM estimated by the KAPSVT effectively improves
the SCNR performance for airborne radar systems.
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