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Abstract A new method is presented to effectively estimate the direction-of-arrival of a
source signal and the phase error of a uniform linear array. Assuming that one sensor (except
the reference one) has been calibrated, the proposed method appropriately reconstructs the
datamatrix and establishes a series of linear equationswith respect to the unknownparameters
through eigenvalue decomposition. The unknown parameters can be determined directly
by the least squares method. Unlike the conventional methods, the proposed method only
requires one calibrated sensor, which may not be consecutively spaced to the reference one.
The computational complexity analysis is given and the effectiveness of the proposedmethod
is validated by simulation results.

Keywords Phase error calibration · DOA estimation · Partly calibrated array · Array signal
processing

1 Introduction

The problem of direction-of-arrival (DOA) estimation using sensor arrays plays an impor-
tant role in various areas such as wireless communication, radar and radio astronomy (Krim
and Viberg 1996; Schmidt 1986; Ng and See 1996; Zhang et al. 2017; Liao et al. 2016).
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In general, an accurate knowledge of the array characteristics is required to determine the
unknown DOA of the incoming signal. However, the array systems in practical applica-
tions usually suffer from various kinds of imperfections and hence, the array manifold is
only imprecisely known. In this situation, the performance of direction finding techniques
may be significantly degraded due to the mismatch between the actual and nominal array
manifolds.

During the past few decades, the problems of array calibration and DOA estimation in
the presence of array uncertainties have received extensive attention (Friedlander and Weiss
1988; Liu et al. 2011; Cao et al. 2013; Liao and Chan 2012, 2015; See and Gershman 2004;
Zhang et al. 2015; Roy and Kailath 1989). Assuming that a series of calibration sources
are located with exactly known DOAs, the array can be effectively calibrated. In practice,
however, the calibration sources are not always available. In order to deal with this problem,
some methods are proposed to calibrate arrays in the absence of the exact knowledge of
DOAs (Friedlander and Weiss 1988; Liu et al. 2011; Cao et al. 2013). In particular, Weiss
and Friedlander proposed an alternative iterative method (named as WF method), which can
estimate the DOAs and gain-phase error of each sensor element simultaneously (Friedlander
and Weiss 1988). However, this method may be considerably deteriorated in the presence of
relatively large phase uncertainties due to the ambiguity in estimating the phase uncertainties
and DOAs. The eigenstructure based methods in Liu et al. (2011) and Cao et al. (2013) can
work well when the phase error is large. Nevertheless, both of these methods suffer from
heavy complexity.

Recently, great interest has been shown in partly calibrated arrays by the research com-
munity; see the literature Liao and Chan (2012, 2015), See and Gershman (2004) and the
references therein. It has been shown in Liao and Chan (2015) and See and Gershman (2004)
that if each subarray is calibrated, the ESPRIT-like algorithm (Liao and Chan 2015) or spec-
tral rank-reduction algorithm (See and Gershman 2004) can be utilized to determine the
DOAs. For a partly calibrated uniform linear array (ULA) where some sensors have been
calibrated, i.e. the gains/phases of these sensors are known as prior, the shift-invariant prop-
erty can be employed to estimate the DOAs as well as the gains/phases. It should be noted
that the approaches in Liao and Chan (2012, 2015) and See and Gershman (2004) require at
least one pair of consecutive calibrated sensors.

In this paper, the problem of DOA estimation and phase error calibration in a ULA
is addressed. We develop a new method to estimate DOA of a single signal and phase
error of sensor array provided that one sensor, which is different from the reference one,
is calibrated. The proposed method in this paper constructs a series of data matrices and
estimates the unknown DOA together with phase errors by LS minimization. Analysis on the
computational complexity is contained and simulation results comparing the performance of
the proposed method to MUSIC method (Schmidt 1986) and WF method (Friedlander and
Weiss 1988) demonstrate its superiority.

2 Problem formulation

Consider a ULA comprising M omnidirectional sensors labeled 1, 2, . . . , M , and inter-
element spacing is half a wavelength as shown in Fig. 1. The reference sensor, whose label is
(M + 1)/2, is located at origin. It is assumed that a signal impinges on the array with DOA
θ . In the presence of phase error, the steering vector can be written as

ã(θ) = �a(θ) (1)
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Fig. 1 ULA with one calibrated
sensor

where a(θ) is the steering vector under ideal condition, which is given by

a(θ) =
[

e j
(1−M)

2 πsin(θ), e j
(3−M)

2 πsin(θ), . . . , 1, . . . , e j
(M−3)

2 πsin(θ), e j
(M−1)

2 πsin(θ)
]

(2)

where � = diag
[

e jϕ1 , . . . , e jϕM
]

, ϕm(m = 1, 2, . . . , M) denotes the phase error of the
mth sensor. The presence of the mismatch between the actual and nominal array manifolds
significantly degrades the performance of some classical subspace-based direction finding
method, such asMUSIC (Schmidt 1986), ESPRIT (Krim and Viberg 1996;Weiss and Gavish
1991), etc.

In this paper, we consider the problem of estimating the DOA and phase error in a partly
calibrated array. We take the sensor locates at origin as the reference one, and assume that
one of other sensors whose label is c has been calibrated. In other words, it can be assumed
that ϕr = 0 and ϕc is known, where r is the label of the reference sensor. For the array
configuration described above, we have ϕ M+1

2
= 0 (i.e. r = M+1

2 ). The received vector of
array is thus given by

x(t) = ã(θ)s(t) + n(t) = �a(θ)s(t) + n(t) (3)

where s(t) contains the complex envelope of the signal, n(t) is a complex Gaussian additive
noise vector of M × 1 dimension. The snapshot data matrix composed of L snapshots can
be written as

X = [x(1), x(2), . . . , x(L)] = �a(θ)S + N (4)

where S = [s(1), s(2), . . . , s(L)] and N = [n(1), n(2), . . . , n(L)]. Then the covariance
matrix of the array output can be derived as

R = E{xxH} = σ 2
s �a(θ)aH(θ)�H + σ 2

n I (5)

where σ 2
n is noise power and signal power is defined by σ 2

s = E{s(t)sH(t)}. In practice,
the covariance matrix R is often estimated by ̂R = 1

LXX
H. Thus our objective is to simul-

taneously estimate the DOA and phase errors from array output X or covariance matrix
̂R.

3 Proposed method for ULA

Without loss of generality, it is assumed that the first sensor has been calibrated, i.e. c = 1
in the following text.
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3.1 Phase-error calibration

Before presenting the proposed phase error calibrationmethod, we first construct some selec-
tion matrices as follow

J1 =
[

O (M+1)
2 × (M−1)

2
I (M+1)

2

]

(6)

J2 =
[

O (M−1)
2 × (M+1)

2
I (M−1)

2

]

(7)

J3 =
[

O (M−1)
2 × (M−1)

2
I (M−1)

2
0 (M−1)

2

]

(8)

where Om×n , Im and 0m denote m × n zeros matrix, m × m identity matrix and m × 1 zero
vector, respectively. We give the following formula in (9), which can be used to derive to the
proposed method.

e j A + e j B = 2�
(

e j
A−B
2

)

e j
A+B
2 (9)

where �(·) returns the real part of a complex number, A and B are arbitrary real numbers.
From (9), we construct the following extracted output data using selection matrices

X1 = J1X (10)

X2 = J1flipud(X) (11)

where flipup(·) is the operator that flips matrices up to down, for an arbitrary p× l matrix C,
we have flipud(C) = PC, whereP is the p× p exchangematrix with ones on its anti-diagonal
and zeros elsewhere.

For ease of illustration, we denote Θ = πsin(θ). Now considering the sum of X1 and X2

as Fig. 2 shows, we can obtain

X12 = J1X + J1flipud(X) = Γ12b12S + N12 (12)

where N12 denotes the compound noise, Γ12 is a real diagonal matrix which can be written
as the following expression by using (9),

Γ12 = 2diag

{[

1,�
(

e j
2Θ+ϕ(M+3)/2−ϕ(M−1)2

2

)

, . . . ,�
(

e j
(M−1)Θ+ϕM−ϕ1

2

)

]}

(13)

Fig. 2 Sum output from symmetrical sensors
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and b12 is a complex vector containing the sum information of phase errors of symmetric
sensors, we have:

b12 =
[

1, e j
ϕ(M+3)/2+ϕ(M−1)/2

2 , . . . , e j
ϕM+ϕ1

2

]T

(14)

According to the subspace methodology, we know that Γ12b12 spans the same subspace
as the principal eigenvector of R12 does, which can be described as

span(Γ12b12) = span(γ12) (15)

where R12 is the covariance matrix of X12, γ12 is the principal eigenvector of R12 and has
been normalized by its first element. It is necessary to note that the signs of elements in
Γ12 remain uncertain, leading to a π -ambiguity problem between Γ12 and the phases of b12.
Based on reasonable hypothesis that the phases of b12 distributed on the range (−π

2 , π
2 ).

Then the following equation holds
� b12 = � γ12 (16)

where � [	] = arctan
[

Im(	)
Re(	)

]

returns a phase value on the range (−π
2 , π

2 ). From Eq. (16), we

can establish a series of equations about ϕm . Obviously, the number of equations is less than
that of unknown parameters, so it is required to establish more equations to get a solution
of ϕm . Similar to (10) and (11), we construct the following two sets data using selection
matrices

X3 = J2X (17)

X4 = J3flipud(X) (18)

X5 = J3X (19)

X6 = J2flipud(X). (20)

We sum up X3 and X4, X5 and X6, respectively, as Fig. 3 shows. The obtained sum data can
be derived by

X34 =
[

xT0
X3 + X4

]

= Γ34b34S + N34 (21)

X56 =
[

xT0
X5 + X6

]

= Γ56b56S + N56 (22)

where xT0 = X(M+1
2 , :) means the M+1

2 th row of X. Both Γ34 and Γ56 are diagonal real
matrices, andN34 andN56 denote the terms of compound noise. The complex vector b34 and
b56 can be written as

b34 =
[

1, e j
Θ+ϕ(M+3)/2+ϕ(M+1)/2

2 , . . . , e j
Θ+ϕM+ϕ2

2

]T

(23)

b56 =
[

1, e j
−Θ+ϕ(M+1)/2+ϕ(M−1)/2

2 , . . . , e j
−Θ+ϕ(M−1)+ϕ1

2

]T

. (24)

Denote the covariance matrix ofX34 andX56 asR34 andR56, respectively, then the following
two equations hold

� b34 = � γ34 (25)
� b56 = � γ56 (26)
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Fig. 3 Sum outputs from malposed sensors

where γ34 and γ56 are the principal eigenvector of R34 and R56, respectively. From (23)
and (24) we know that new parameter Θ , which contains the information of DOA, has been
introduced.

Then equations can be established using (16), (25) and (26) by the expression

C1u = d1 (27)

C2u = d2 (28)

C3u = d3 (29)

respectively, or equivalently expressed as

Bu = d. (30)

In the above equations, u is the unknown parameter vector containing the information of
phase errors and DOA, which can be described as

u = [ϕ1, . . . , ϕm, . . . , ϕM ,Θ]T (31)

d is a vector constructed by the phases of the principal eigenvectors

d =
⎡

⎣

d1
d2
d3

⎤

⎦ =

⎡

⎢

⎢

⎢

⎣

� γ12

(

2 : (M+1)
2

)

� γ34

(

2 : (M+1)
2

)

� γ56

(

2 : (M+1)
2

)

⎤

⎥

⎥

⎥

⎦

(32)

C1, C2, C3 are M1 × (M + 1) coefficient matrices extracted from the phase of b12, b34, b56,
respectively, and M1 = (M−1)

2 . A short analysis yields

B =
⎡

⎣

C1

C2

C3

⎤

⎦ = 1

2

⎡

⎣

PM1 0M1 IM1 0M1

0M1 PM1 IM1 1M1

PM1 IM1 0M1 −1M1

⎤

⎦ . (33)

In (33), M1 � (M − 1)/2, 0M1 and 1M1 denote M1 × 1 vector with all zeros and ones,
respectively. PM1 is M1dimension exchange matrix with ones on its anti-diagonal and IM1 is
M1 dimension identity matrix. We can prove that (see “Appendix” for detail)

rank (C12) = rank (C13) = rank (C23) = M − 1 (34)
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where C12 =
[

C1

C2

]

, C13 =
[

C1

C3

]

, and C23 =
[

C2

C3

]

, respectively. Similarly, we denote

d12, d13 and d23 as
[

d1
d2

]

,

[

d1
d3

]

, and

[

d2
d3

]

, respectively. From (34), we know that Ci j (i =
1, 2, j = 2, 3 and i �= j) is a matrix of full row rank.

Provided that ϕ(M−1)/2 = 0 and the value of ϕc has been known, we have

˜Ci j ũ = di j − ϕcCi j (:, c) (35)

where ˜Ci j is a (M − 1) × (M − 1) modified coefficient matrix which can be obtained by
rejecting the M+1

2 th and cth columns from Ci j (i = 1, 2, j = 2, 3 and i �= j).
Without loss of generality, we assume that c < M+1

2 , then ũ can be described as

ũ =
[

ϕ1, . . . , ϕc−1, ϕc+1, . . . , ϕ M−1
2

, ϕ M+3
2

, . . . , ϕM ,Θ
]T

. (36)

Because the property of full row rank of Ci j , the rows of Ci j are linearly independent, either
are the rows of ˜Ci j . The following equation hold

rank
(

˜Ci j
) = M − 1. (37)

Then for any given M , ˜Ci j is a matrix of full column rank. In other words, Eq. (35) must
have an unique least squares solution, which can be given by

̂ũLS = ˜C†
i j

[

di j − ϕcCi j (:, c)
]

(38)

where ˜C†
i j is the pseudoinverse of ˜Ci j .Then the DOA and phase error can be simultaneously

obtained from (38).

3.2 Method to improve practicality

The method proposed above has a limitation which can be expressed by the following math-
ematical expression

max(abs(� b)) ≤ π

2
(39)

where b = [

bT12, bT34, bT56
]T
. To improve the maneuverability, we apply a rotational factor

Ω to the array response if the rough direction of signal is prior known. The prior information
of DOA can be obtained beforehand by using a direction finding method with low resolution.
Once we have known that the direction of a signal or a calibration source locates in the range
of [θ0 − δ, θ0 + δ], where δ is a positive number which is expected to be as small as possible.
Under the assumption that θ0−δ and θ0+δ have the same signs, we can choose the rotational
factor Ω as

Ω = π [sin(θ0 − δ) + sin(θ0 + δ)]

2
. (40)

Construct a diagonal rotational matrix Ξ as

� = diag
{[

e j
(M−1)Ω

2 , . . . , 1, . . . , e j
(1−M)Ω

2

]}

. (41)

We use � to compensate received vector of array x(t), and then the modified received vector
y can be derived as

y(t) = �x(t) = �a(˜Θ)s(t) + ny(t) (42)

123



530 Multidim Syst Sign Process (2018) 29:523–535

where ˜Θ = Θ − Ω is a modified inter-element delay difference that distributed around zero
and its estimation ̂

˜Θ can be obtain if we exert the proposed method on y(t) instead of x(t). In
this case, the applied condition (39) is much easier to be satisfied andDOA can be obtained by

̂θ = arcsin

(

̂
˜Θ + Ω

π

)

. (43)

As the phase errors are direction-independence, so the rotational factor Ω does not affect the
estimation of ϕm .

4 Computational complexity and simulations

To the best of our knowledge, there are no state of the art methods which are based on partly
calibrated arrays can estimate phase error and DOA under the above conditions, especially
when the calibrated sensor is not consecutively spaced to the reference one. In addition, ref-
erences Liu et al. (2011) and Cao et al. (2013) have concluded that their methods have high
complexity as compared to the WF method in Friedlander and Weiss (1988). Therefore, we
will compare the performance of our proposed method with the classical phase calibration
method which proposed by Friedlander and Weiss (1988). This WF method simultaneously
estimates DOA and phase error in an iterative approach. To be specific, the DOA is first
be estimated by assuming that the phase parameters are known. Given estimates of the
phase parameters, the DOA is again obtained according to the theory of eigenstructure sub-
space. The WF algorithm iteratively performs the two-step procedure until convergence.
This method may suffer from suboptimal convergence because of the joint iteration between
DOA estimation and array parameter estimation, and they are based on the assumption that
the array perturbations are small. Nevertheless, it can be applied to an arbitrary array, so in
the subsections below we will test the WF method for performance comparison, including
the computational complexity and the estimated accuracy.

4.1 Computational complexity analysis

The computational complexity of the WF method mainly comes from the EVD and the peak
search of the spatial spectrum. For every iteration, it implements a M × M EVD, requiring
on the order of 15M3 operations (Weiss and Gavish 1991; Golub and Loan 1996). Then the
total operations of WF method is K (15M3 + D), where K is the number of iteration, D is
the operation number of peak search process.

The proposedmethod implements (M+1
2 )×(M+1

2 )EVD twice, which requires 15
4 (M+1)3

operations totally. In addition, it computes the inverse of a (M −1)× (M −1) matrix, which
has the same order of 15(M − 1)3.

For any M ≥ 2, we have 15M3 > 15
4 (M + 1)3. Then as long as the iteration number K is

slightly greater than 1, the proposed method exhibits significant computational advantages
as compared to the WF method.

4.2 Simulations and results

In this subsection, numerical experiments are provided to explore different aspects of pro-
posed method and make comparisons with other techniques. Specifically, performance
comparison with the MUSIC method (Schmidt 1986) and the WF method (Friedlander and
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Weiss 1988) is made in the terms of the root mean square error (RMSE) of DOA estimates
and the RMSE phase error estimates.

In the next simulations, the phase error {ϕm}Mm=1 of sensors are generated by

ϕm = √
12σϕηm (44)

where ηm is independent and identically distributed random variable which is distributed
uniformly in the range of [−0.5, 0.5], σϕ is the standard deviation of ϕm .

We use a ULA with element number M = 15 as shown in Fig. 1. A signal impinging on
the array from direction θ = 12◦, and we have known it is located at [θ0 − δ, θ0 + δ] with
θ0 = 9◦ and δ = 8◦. The number of samples is 512. It is assumed that the accurate value of
phase error of the first sensor has been known. In addition, comparison with MUSIC method
is made to illustrate the performance improvement of the proposed method.

Figure 4 shows the spatial spectrums of different methods when σϕ = 30◦ and SNR is
15dB. Figure 5 shows the RMSE curves of DOA estimates versus the standard deviation of
the phase error σϕ and the RMSE curves of phase error estimates versus σϕ , respectively.
The performance of estimation versus SNR is shown in Fig. 6.

We observe from Fig. 4 that when the MUSIC algorithm has partly knowledge of phase
parameters, no reliable estimate of the DOAs can be extracted from the plot. ForWFmethod,
it converges to suboptimal solution and results in the degradation of its performance. The
spatial spectrum generated by the proposed method gets its peak value when the direction is
12◦, which is exactly the true value of DOA. In other words, the accuracy of DOA has been
greatly improved by using the propose algorithm.

It can be seen from Fig. 5 that the WF method performs slightly better than MUSIC
algorithm using partly calibrated sensors, and that the propose method outperforms the WF
method. All methods degrade as σϕ increases. Moreover, it can be noted that when σϕ is no
larger than 40◦, which is reasonable in most engineering applications, the proposed methods
are significantly better than the WF method. This result is consistent with the analysis in
Sect. 3 and verifies the effectiveness of the proposed method.

Figure 6 shows the RMSE curves of DOA estimates versus SNR and the RMSE curves of
phase error estimates versus SNR, respectively. All methods perform better as σϕ increases.
It can be noted that when SNR is larger than 0 dB, the proposed methods are better than the
WF method. But when SNR is lower than 0 dB, the performance of the proposed method
is poor. This is because when SNR is low, the accurate estimation of the subspace of signal
becomes difficult, and that leads to a poor estimation of the DOA and phase error.

Fig. 4 Spatial spectrums of
different methods
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Fig. 5 Estimation performance versus σϕ . a RMSE of DOA estimates versus σϕ . b RMSE of phase error
estimates versus σϕ

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SNR(dB)

R
M

S
E

 o
f D

O
A

 e
st

im
at

es
 (d

eg
re

e) MUSIC Method
WF Method
Proposed Method

−5 0 5 10 15 20

2

4

6

8

10

12

14

16

18

SNR(dB)

R
M

S
E

 o
f p

ha
se

 e
st

im
at

es
 (d

eg
re

e)

Without Calibration
WF Method
Proposed Method

(a) (b)

Fig. 6 Estimation performance versus SNR. a RMSE of DOA estimates versus SNR. b RMSE of phase error
estimates versus SNR

5 Conclusion

In this paper, we address the estimation ofDOAand phase error for aULAwith one calibrated
sensor. Under some reasonable assumptions, a novel error calibration method is presented.
The proposedmethod constructs equations bymodified received data matrix and solves DOA
and unknown phase error by LS method. The proposed method is computationally attrac-
tive and has the capability to calibrate the phase error of array sensor without deploying a
calibration source at accurately known location. At the same time, it does not require con-
secutive calibrated sensors. In this paper, method to improve practicality is also considered,
and simulation results confirmed the high performance of the proposed method.

Additionally, it is worth noting that although this paper addresses the problem of direction
finding and phase error estimation for a partly calibratedULA, the application of the proposed
method can also be extended to array with an arbitrary geometry. Array shape calibration
can also be applied by using the same idea mentioned in the paper. All those are included in
our further study.
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Appendix

The proof of (34).
(1)

2

[

C1

C2

]

=
[

PM1 0M1 IM1 0M1

0M1 PM1 IM1 1M1

]

c
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

PM1 IM1 0 0
0 0 · · · 0
0
...

0

PM1−1
IM1 1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

r
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

PM1 IM1 0 0

O −1
−1 1

. . . . . .

−1 1 O

O 1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

c
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

IM1 IM1 0 0

O

−1 O
1 −1

. . .
. . .

O 1 −1

1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

r
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

IM1 IM1 0 0

O −IM1

1
2
...

M1

1
1
...

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

� Q

where
r

˜

and
c

˜

denote elementary row operation and elementary column operation,

respectively, and they does not change the rank of a matrix. From the analysis above, we
conclude that

rank

([

C1

C2

])

= M − 1.

(2)

2
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C1

C3

]

=
[

PM1 0M1 IM1 0M1

PM1 IM1 0M1 −1M1

]

c
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⎡

⎢

⎢

⎢

⎢

⎢

⎣

PM1 IM1 0 0

PM1

0 . . . 0 0

IM1−1

0
...

0

−1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

r
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

PM1 IM1 0 0

O

−1 O
1 −1

. . .
. . .

O 1 −1

−1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

c
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

IM1 IM1 0

O

−1 O
1 −1

. . .
. . .

O 1 −1

1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

r
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎣

IM1 IM1 0 0

O −IM1

1
2
...

M1

1
1
...

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Q
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So, we have

rank

([

C1

C3

])

= rank

([

C1

C2

])

.

(3)

2

[

C2

C3

]

=
[

0M1 PM1 IM1 1M1

PM1 IM1 0M1 −1M1

]

c
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

O 0
0 1

. . . . . .

0 1 O
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1
0
...
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0 O
1 0

. . .
. . .

O 1 0
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1
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

c
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IM1

0 O
1 0

. . .
. . .

O 1 0

1

1
0
...

0
0 O
1 0

. . .
. . .

O 1 0

IM1 −1

1
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

r
˜

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IM1

0 O
1 0

. . .
. . .

O 1 0

1

1
0
...

0

O IM1

−1
−2
...

−M1

1
−1
...

±1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We have

rank

([

C2

C3

])

= M − 1.

From the proof above, we can conclude that

rank

([

C1

C2

])

= rank

([

C1

C3

])

= rank

([

C2

C3

])

= M − 1.

This completes the proof.
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