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A B S T R A C T

Airborne polarimetric conformal array radar has gained increased attention recently. However, the conformal
array configuration and polarization factors may lead to non-stationary clutter, which significantly degrades
the performance of space–time adaptive processing (STAP), particularly in short-range clutter environments.
In this paper, we introduce a knowledge-aided multi-dictionary block sparse Bayesian learning (KA-MDBSBL)
algorithm to improve the clutter suppression performance. Using prior knowledge, the proposed algorithm
designs multi-dictionary matrices for each training sample, rather than a single dictionary matrix for the cell
under test (CUT). We take advantage of the identical clutter profile under each dictionary matrix. In the
multi-dictionary case, we enforce shared sparsity in the clutter profiles. Additionally, we utilize the inherent
block structure of the dictionary matrix to jointly recover clutter and noise power through a fast convergence
learning framework. Subsequently, the clutter plus noise covariance matrix is reconstructed using precisely
estimated clutter and noise power, along with the dictionary matrix corresponding to the CUT. Numerical
simulations are included to demonstrate the effectiveness and superiority of the proposed algorithm.
1. Introduction

With the development of miniaturization of unmanned early warn-
ing platforms, the conformal array has attracted increased interest due
to numerous advantages over uniform linear arrays (ULAs) and pla-
nar arrays. These advantages include aerodynamic shaping that aligns
with the platform, larger array aperture, reduced payload and radar
cross section (RCS), and others [1,2]. Unlike ULAs and planar arrays,
where each element is aligned in a uniform manner, the elements of a
conformal array are placed on the surface of the platform. Therefore,
the antenna patterns of the conformal array are no longer consistent in
the global coordinate system. This characteristic allows the conformal
array to sense polarization information, thereby enhancing target de-
tection performance. The above conclusion has been verified through
theoretical analysis and simulations, see the recent work in [3].

Space–time adaptive processing (STAP) is a powerful technique for
the moving target indicator (MTI) on motion platforms [4]. When STAP
technology is applied in conformal arrays, there are some challenges
that need to be addressed. The use of special antenna arrangements
introduces non-linearity in array geometry, leading to non-stationary
clutter distribution [5–8]. Additionally, the clutter polarization proper-
ties in different range cells exhibit non-uniformity due to the influence
of antenna patterns and varying terrain scattering characteristics [9,
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10]. As a consequence, the training samples obtained from the range
cells adjacent to the cell under test (CUT) do not strictly adhere to
the independently and identically distributed (IID) condition. This is
particularly evident for short-range clutter, where available training
samples are scarce.

To address the shortage of training samples, the reduced-dimension
(RD) STAP utilizes a well-designed transformation matrix to convert the
full-dimension data into the local domain data [11,12]. The reduced-
rank (RR) STAP, on the other hand, projects the echo signal onto a low-
dimensional subspace [13,14]. It is generally considered that RD-STAP
reduces the training sample number to twice the local system degrees of
freedom, while RR-STAP reduces it to twice the clutter rank. However,
the design of auxiliary channels and the accurate determination of clut-
ter rank for conformal arrays remain open challenges. To address the
range-dependent training sample issue, numerous clutter compensation
methods have been proposed. These include angle-Doppler compensa-
tion (ADC) [15], adaptive angle-Doppler compensation (A2DC) [16],
and so on. These methods aim to align the peaks of the clutter ridge in
the training samples as closely as possible to that of the CUT. Note that
these methods are only effective in highly directional antenna scenar-
ios, and offer only partial clutter compensation. Additionally, the direct
data domain (D3) approach [17] exclusively utilizes the data from CUT
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without requiring training samples, making it an appealing option for
conformal arrays. However, this compromise leads to aperture loss,
resulting in performance degradation.

Recently, sparse recovery (SR) technologies have been applied to
STAP by exploiting the inherent sparsity of clutter and using only a
small number of training samples to reconstruct the clutter plus noise
covariance matrix (CNCM). These technologies primarily fall into three
categories: greedy algorithms [18], convex/nonconvex optimization
methods [19–21], and Bayesian learning techniques [22–24]. Among
these approaches, sparse Bayesian learning (SBL) captures significant
attention due to its self-regulating user parameters and robustness
against correlation. Existing SBL-STAP methods typically rely on train-
ing samples to recover the CNCM based on a shared dictionary matrix.
However, the shared dictionary matrix is not suitable for conformal
array STAP due to the non-linear array geometry and different an-
tenna patterns. In contrast, the multi-dictionary SBL approach uses
multiple underlying dictionaries to process samples. This method has
been studied for image processing [25], wideband direction-of-arrival
estimation [26], etc, indicating its potential applicability in conformal
array STAP.

In this paper, a knowledge-aid multi-dictionary block sparse
Bayesian learning (KA-MDBSBL) method is presented to improve the
performance of polarimetric conformal array SR-STAP. Firstly, the
signal model and work mechanism are introduced in detail for an
airborne polarimetric conformal array radar. Subsequently, we exploit
prior knowledge, which includes airborne radar system parameters
and conformal array configuration, to devise multi-dictionary matrices
for training samples and the CUT. We further illustrate the multi-
dictionary problem and unique dictionary block structure. Finally, a
fast convergence iterative framework is derived to estimate the clutter
and noise power, resulting in a precise CNCM. Numerical simulations
are carried out to demonstrate the superiority of the KA-MDBSBL across
various non-stationary clutter backgrounds.

The remainder of this paper is organized as follows. Section 2
introduces the signal model, work mechanism, and STAP principle for
the airborne polarimetric conformal array radar. Section 3 discusses
the conformal array SR-STAP problem. Section 4 analyzes the details of
the proposed conformal array SR-STAP method. Section 5 provides the
simulation results to verify the effectiveness of the proposed method.
Section 6 concludes this paper.

Notations: In this paper, we use lightface for scalar 𝑎, lower case
boldface for vector 𝐚, and upper case for matrix 𝐀. 𝐀−1, 𝐀∶,𝑞 denote the
inverse and the 𝑞th column of the matrix 𝐀, respectively. diag(𝐚) is the
diagonalization of the vector 𝐚, and blkdiag (⋅) forms a block diagonal
matrix. Double line body C means the complex numbers domain. (⋅)∗,
⋅)𝑇 , (⋅)𝐻 , ⊗, ⊙, and E{⋅} denote the conjugate, transpose, conjugate
ranspose, Kronecker product, Hadamard product, and statistical expec-
ation operators, respectively. 𝐈𝑁 is the 𝑁-dimensional identity matrix.
{⋅}, |⋅|, and Tr (⋅) are the range space, determinant, and trace of a
atrix, respectively. ‖⋅‖2, ‖⋅‖𝐹 , and ‖⋅‖2,0 are the 𝑙2 norm, Frobenius
orm, and 𝑙2,0 mixed norm, respectively. ∝ means that the quantities
n its both sides are directly proportional.

. Signal model and problem formulation

.1. Transmitted signal model

For the sake of illustration, we consider a semicircular conformal
rray, as shown in Fig. 1. It is important to note that the proposed
odel is still applicable to other conformal arrays. The conformal array
latform flies along the 𝑥-axis with a constant velocity 𝑣 and crab angle
𝑏 at the height 𝐻 . Here we assume that between every two adjacent
ntennas, one dipole is installed parallel to the tangent direction of
he semicircle, and another dipole is installed perpendicular to this
irection. The arc length distance between adjacent antennas is 𝜆∕2,
here 𝜆 stands for the radar wavelength. Suppose that the number of
2

a

Fig. 1. Geometry model of airborne polarimetric conformal array radar.

elements is 𝑁 , and we denote the position of the 𝑛th element in global
coordinate system as 𝐝𝑛 = [𝑥𝑛, 𝑦𝑛, 𝑧𝑛]𝑇 , 𝑛 = 1,… , 𝑁 . The unit vector
describing the signal propagation direction is given by

𝐫(𝜃, 𝜑) = [sin 𝜃 cos𝜑, sin 𝜃 sin𝜑,−cos 𝜃]𝑇 (1)

where 𝜃 and 𝜑 are the elevation angle and azimuth angle, respectively.
ote that they are defined in the global coordinate, as illustrated in
ig. 1.

In contrast to the traditional ULA, each antenna pattern of the
onformal array is unique due to the varied orientations of the antenna
nstallation. Specifically, we can express the antenna pattern 𝐠𝑛(𝜃, 𝜑) as

𝑛(𝜃, 𝜑) = 𝑔𝜃(𝜃𝑛, �̃�𝑛)𝐞𝜃 + 𝑔�̃�(𝜃𝑛, �̃�𝑛)𝐞�̃�, 𝑛 = 1, 2,… , 𝑁 (2)

here (𝜃𝑛, �̃�𝑛) denotes the corresponding direction of (𝜃, 𝜑) in the local
pherical coordinate system of the 𝑛th element (as shown in Fig. 2(a)),
𝜃(𝜃𝑛, �̃�𝑛) and 𝑔�̃�(𝜃𝑛, �̃�𝑛) represent two polarized components under
ase vectors 𝐞𝜃 and 𝐞�̃�, respectively. Since 𝑔𝜃(𝜃𝑛, �̃�𝑛) and 𝑔�̃�(𝜃𝑛, �̃�𝑛) are
sually defined in local coordinate system,1 coordinate transformation
s necessary to obtain the 𝑛th pattern 𝐠𝑛(𝜃, 𝜑) for the given (𝜃, 𝜑). A
oncise coordinate transformation process is shown in Fig. 2(b). For
ore details, one can refer to [28].

Assuming that the antenna pattern 𝐠𝑛(𝜃, 𝜑) (𝑛 = 1, 2,… , 𝑁) is
nown, we further define 𝐆(𝜃, 𝜑) as

(𝜃, 𝜑) = [𝐠1(𝜃, 𝜑), 𝐠2(𝜃, 𝜑),… , 𝐠𝑁 (𝜃, 𝜑)]𝑇∈ C𝑁×2 (3)

lso, it is not difficult to obtain the following spatial steering vector

𝑠(𝜃, 𝜑) = [𝑒−𝑗2𝜋𝑓𝑠,1 , 𝑒−𝑗2𝜋𝑓𝑠,2 ,… , 𝑒−𝑗2𝜋𝑓𝑠,𝑁 ]𝑇∈ C𝑁 (4)

here 𝑓𝑠,𝑛 = 𝐝𝑇𝑛 𝐫(𝜃, 𝜑)∕𝜆, 𝑛 = 1, 2,… , 𝑁 . The manifold matrix 𝐀(𝜃, 𝜑) of
he polarimetric conformal array can be denoted as

(𝜃, 𝜑) = diag(𝐚𝑠(𝜃, 𝜑))𝐆(𝜃, 𝜑) = [𝐚𝑠,𝐞𝜃 (𝜃, 𝜑), 𝐚𝑠,𝐞𝜑 (𝜃, 𝜑)] ∈ C𝑁×2 (5)

ith the above notations and performing transmit beamforming using
eight vector 𝐰𝑡, we can express the synthesized polarization signal in
irection (𝜃, 𝜑) as [29]

(𝜃, 𝜑) = [𝐰𝐻
𝑡 𝐀(𝜃, 𝜑)]𝑇 = [𝑝𝐞𝜃 (𝜃, 𝜑), 𝑝𝐞𝜑 (𝜃, 𝜑)]

𝑇 ∈ C2 (6)

1 One can refer to [27] to obtain the detailed patterns of different types of
ntennas.
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Fig. 2. (a) The semicircular array. (b) Transformation relationship between different coordinate systems.
where

𝑝𝐞𝜃 (𝜃, 𝜑) = 𝐰𝐻
𝑡 𝐚𝑠,𝐞𝜃 (𝜃, 𝜑), 𝑝𝐞𝜑 (𝜃, 𝜑) = 𝐰𝐻

𝑡 𝐚𝑠,𝐞𝜑 (𝜃, 𝜑) (7)

According to (6), one can see that the radiation beampattern is re-
lated to 𝐰𝑡, and any state of polarization can be synthesized by op-
timizing 𝐰𝑡 [29]. Thus, the polarimetric conformal array owns multi-
polarization characteristics, which can provide more information about
the target and clutter.

2.2. Received signal model

We suppose that 𝑀 pulses at a constant pulse repetition frequency
(PRF) of 𝑓𝑟 are transmitted during a coherent processing interval (CPI).
The temporal (Doppler) steering vector is given by

𝐚𝑑 (𝑓 𝑡
𝑑 ) = [1, 𝑒−𝑗2𝜋𝑓

𝑡
𝑑 ,… , 𝑒−𝑗2𝜋(𝑀−1)𝑓 𝑡

𝑑 ]
𝑇
∈ C𝑀 (8)

where 𝑓 𝑡
𝑑 = 2[𝑣 sin 𝜃𝑡 cos(𝜑𝑡 − 𝜑𝑏) + 𝑣𝑡]∕(𝜆𝑓𝑟) denotes the normalized

Doppler frequency, 𝜃𝑡, 𝜑𝑡 and 𝑣𝑡 are elevation angle, azimuth angle and
radical velocity of the target, respectively. Then the polarization-space
steering vector [30] of the target can be expressed as

𝐚𝑝𝑠(𝜃𝑡, 𝜑𝑡,𝐒𝑡) = 𝐀(𝜃𝑡, 𝜑𝑡)𝐒𝑡𝐩(𝜃𝑡, 𝜑𝑡) ∈ C𝑁 (9)

where 𝐒𝑡 is the scattering matrix and provides the polarization trans-
forming characteristics of the target, its expression is given by

𝐒𝑡 =
[

𝑠ℎℎ,𝑡 𝑠ℎ𝑣,𝑡
𝑠𝑣ℎ,𝑡 𝑠𝑣𝑣,𝑡

]

(10)

Assuming that the velocity, RCS, and polarization characteristics of the
target are fixed in a CPI, one can express the noise-free polarization-
space–time received signal of the target as

𝐱𝑡 = 𝛼𝑡𝐚𝑝𝑠(𝜃𝑡, 𝜑𝑡,𝐒𝑡)⊗ 𝐚𝑑 (𝑓 𝑡
𝑑 ) = 𝛼𝑡𝐚𝑝𝑠𝑑 ∈ C𝑀𝑁 (11)

where 𝛼𝑡 is the target complex reflection coefficient, 𝐚𝑝𝑠𝑑 = 𝐚𝑝𝑠(𝜃𝑡, 𝜑𝑡,𝐒𝑡)
⊗ 𝐚𝑑 (𝑓 𝑡

𝑑 ) denotes the target polarization-space–time steering vector.
Following the classical integral clutter model in [31], we assume

that the interested area contains 𝐿𝑎𝑙𝑙 range cells, and the successive
azimuth angle 𝜑 is uniformly separated into 𝑁𝑐 discrete angles, result-
ing in point-like clutter patch, as shown in Fig. 1. Without considering
the range ambiguous clutter, the clutter echo of the 𝑙th range cell is
expressed as the sum of 𝑁𝑐 clutter patches, i.e.,

𝐱𝑙𝑐 =
𝑁𝑐
∑

𝑖=1
𝛼𝑙,𝑖𝑐 𝐚𝑝𝑠(𝜃𝑙 , 𝜑𝑖,𝐒𝑙,𝑖𝑐 )⊗ 𝐚𝑑 (𝑓

𝑙,𝑖
𝑑,𝑐) ∈ C𝑁𝑀 (12)

where 𝛼𝑙,𝑖𝑐 denotes the complex reflection coefficient of the 𝑖th clutter
patch for the 𝑙th range cell, 𝑓 𝑙,𝑖

𝑑,𝑐 = 2𝐯𝑇 𝐫(𝜃𝑙 , 𝜑𝑖)∕(𝜆𝑓𝑟) is the normalized
Doppler frequency, 𝐯 = [𝑣 cos𝜑𝑏, 𝑣 sin𝜑𝑏, 0]

𝑇 represents the platform
velocity vector, 𝐒𝑙,𝑖𝑐 represents the scattering matrix of the 𝑖th clutter
patch in the 𝑙th range cell, i.e.,

𝐒𝑙,𝑖𝑐 =

[

𝑠𝑙,𝑖ℎℎ,𝑐 𝑠𝑙,𝑖ℎ𝑣,𝑐
𝑙,𝑖 𝑙,𝑖

]

, 𝑖 = 1,… , 𝑁𝑐 , 𝑙 = 1,… , 𝐿𝑎𝑙𝑙 (13)
3

𝑠𝑣ℎ,𝑐 𝑠𝑣𝑣,𝑐
By the reciprocity principle [9], we have 𝑠𝑙,𝑖ℎ𝑣,𝑐 = 𝑠𝑙,𝑖𝑣ℎ,𝑐 . Then 𝐒𝑙,𝑖𝑐 can be
determined by the following three-element vector

𝐬𝑙,𝑖𝑐 = [𝑠𝑙,𝑖ℎℎ,𝑐 , 𝑠
𝑙,𝑖
ℎ𝑣,𝑐 , 𝑠

𝑙,𝑖
𝑣𝑣,𝑐 ]

𝑇 (14)

In this paper, we assume that 𝐬𝑙,𝑖𝑐 ’s are IID and follow complex Gaussian
distribution with zero-mean and covariance matrix 𝐑𝑝 [32], i.e., 𝐬𝑙,𝑖𝑐 ∼
 (𝟎,𝐑𝑝).

2.3. Problem formulation

For a given range CUT, the radar binary hypothesis testing problem
can be formulated as
{

0 ∶ 𝐱 = 𝐱𝑐 + 𝐧
1 ∶ 𝐱 = 𝐱𝑡 + 𝐱𝑐 + 𝐧

(15)

where we have omitted the range cell index 𝑙 for the clutter echo. In
(15), hypotheses 0 and 1 correspond to target absence and presence,
respectively. 𝐧 represents the zero-mean Gaussian white noise with
covariance matrix 𝐑𝑛 = 𝜎2𝑛𝐈𝑀𝑁 , i.e., 𝐧 ∼  (0, 𝜎2𝑛𝐈𝑀𝑁 ), and 𝜎2𝑛 is the
noise power.

Assume that clutter, target signal, and noise are independent of each
other, and the clutter from each patch is uncorrelated with each other.
Then the target-free clutter plus noise covariance matrix can be written
as

𝐑 =E{(𝐱𝑐 + 𝐧)(𝐱𝑐 + 𝐧)𝐻} = 𝐑𝑐 + 𝐑𝑛

=
𝑁𝑐
∑

𝑖=1
E{|

|

𝛼𝑖𝑐 ||
2}𝐚𝑝𝑠(𝜃, 𝜑𝑖,𝐒𝑖𝑐 )𝐚

𝐻
𝑝𝑠(𝜃, 𝜑𝑖,𝐒𝑖𝑐 )⊗ 𝐚𝑑 (𝑓 𝑖

𝑑,𝑐)𝐚
𝐻
𝑑 (𝑓 𝑖

𝑑,𝑐) + 𝜎2𝑛𝐈𝑀𝑁

(16)

where 𝐑𝑐 is the clutter covariance matrix. In practice, 𝐑 is estimated
using 𝐿 training samples {𝐱𝑙}𝐿𝑙=1, i.e.,

�̄� = 1
𝐿

𝐿
∑

𝑙=1
𝐱𝑙𝐱𝐻𝑙 (17)

Based on the minimum variance distortionless response (MVDR) crite-
rion, the well-known STAP weight vector can be computed via

�̂� =
�̄�−1𝐚𝑝𝑠𝑑

𝐚𝐻𝑝𝑠𝑑�̄�−1𝐚𝑝𝑠𝑑
(18)

The Reed–Mallett–Brennan (RMB) rule [33] demonstrates that at
least 𝐿 ≥ 2𝑀𝑁 IID training samples maintain the average loss of less
than 3 dB. However, for conformal arrays, the clutter environments are
usually non-stationary and heterogeneous. In this paper, we are con-
cerned with the covariance matrix estimation problem for conformal
arrays.
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3. SR-STAP problem for conformal arrays

By exploiting the sparsity of clutter in the angle-Doppler domain,
sparse recovery (SR) techniques can be utilized to improve the estima-
tion of the clutter covariance matrix. In contrast to the regular planar
arrays or ULAs, conformal arrays have non-uniform configurations and
the radiation pattern of each antenna is different. Recalling (12), for
a given range CUT, one can determine the corresponding elevation
angle 𝜃0 and uniformly discretize 𝐾 azimuth angles {𝜑𝑘}𝐾𝑘=1 in the az-
imuthal dimension. Then, to apply the SR technique, we can construct
the following overcomplete dictionary matrix 𝐃0 for the polarimetric
conformal array

𝐃0 = [𝐁(𝜃0, 𝜑1, 𝑓
0,1
𝑑 ),𝐁(𝜃0, 𝜑1, 𝑓

0,2
𝑑 ),… ,𝐁(𝜃0, 𝜑𝐾 , 𝑓

0,𝐾
𝑑 )] ∈ C𝑀𝑁×2𝐾2 (19)

here

(𝜃0, 𝜑𝑝, 𝑓
0,𝑞
𝑑 ) = 𝐀(𝜃0, 𝜑𝑝)⊗ 𝐚𝑑 (𝑓

0,𝑞
𝑑 ) ∈ C𝑀𝑁×2, 𝑝, 𝑞 = 1, 2,… , 𝐾 (20)

n (20), 𝑓 0,𝑞
𝑑 = 2𝐯𝑇 𝐫(𝜃0, 𝜑𝑞)∕(𝜆𝑓𝑟), 𝐀(𝜃0, 𝜑𝑝) can be determined from the

patial steering vector 𝐚𝑠
(

𝜃0, 𝜑𝑘
)

and the antenna pattern 𝐠𝑛(𝜃0, 𝜑𝑘), 𝑘 =
, 2,… , 𝐾, 𝑛 = 1, 2,… , 𝑁 , as shown in (5).

Based on the principle of SR-STAP, the received signal of the range
UT can be rewritten as

= 𝐃0𝜸 + 𝐧 (21)

nd the estimation of the sparse vector 𝜸 = [𝛾1, 𝛾2,… , 𝛾2𝐾2 ]𝑇 can be
ormulated as

in
𝜸

‖𝜸‖0 s.t. ‖
‖

𝐱 − 𝐃0𝜸‖‖
2
2 ≤ 𝜉 (22)

here 𝜉 is a given threshold. Several approximate algorithms can be
sed to find the solution to the above problem (22); see [19,21] for
eference. Once 𝜸 and 𝜎2𝑛 are estimated, if the target is absent, the
NCM of CUT can be constructed via

̂ = 𝐃0diag(||𝛾1||
2, |
|

𝛾2||
2,… , |

|

𝛾2𝐾2 |
|

2)𝐃𝐻
0 + 𝜎2𝑛𝐈𝑀𝑁 (23)

nd the STAP weight vector can be calculated using (18).
In practice, if 𝐿 IID training samples {𝐱𝑙}𝐿𝑙=1 are available, the CNCM

f the CUT can be estimated using multiple measurement vector (MMV)
odel. In this case, the received signal matrix can be written as

= 𝐃0Ψ + 𝐍 (24)

here 𝐗 = [𝐱1, 𝐱2,… , 𝐱𝐿] ∈ C𝑀𝑁×𝐿 is the training sample matrix,
= [�̃�1, �̃�2,… , �̃�𝐿] ∈ C2𝐾2×𝐿 denotes the sparse coefficient matrix, and
is the Gaussian white noise matrix. Similarly, utilizing the inherent

parsity in Ψ, the problem of coefficient matrix estimation can be
ormulated as [20,23]

in
Ψ

‖Ψ‖2,0 s.t. ‖
‖

𝐗 − 𝐃0Ψ
‖

‖

2
𝐹 ≤ 𝐿𝜉 (25)

nd the CNCM estimation of the CUT is calculated via

̂ = 1
𝐿

𝐿
∑

𝑙=1
𝐃0diag(Ψ∶,𝑙 ⊙Ψ∗

∶,𝑙)𝐃
𝐻
0 + 𝜎2𝑛𝐈𝑀𝑁 (26)

In the aforementioned SR-STAP technique, the range-dependent
haracteristics of the training samples are not considered. For con-
ormal arrays, a single dictionary matrix cannot fully represent the
roperties of multiple training samples. In addition, the echo of each
lutter patch owns two polarized components under base vectors 𝐞𝜃
nd 𝐞𝜑, thus each atom in the dictionary matrix 𝐃0 is no longer a

space–time steering vector, but a submatrix 𝐁(𝜃0, 𝜑𝑝, 𝑓
0,𝑞
𝑑 ) as indicated

n (20), and 𝐾2 submatrices form the dictionary matrix 𝐃0. Therefore,
he dictionary matrix shows a block structure but is not utilized in the
4

bove-mentioned technique.
4. KA-MDBSBL STAP

In this section, we use multiple dictionaries to represent training
samples and consider the inherent block sparse structure for the clutter
covariance matrix. On this basis, we propose a multi-dictionary block
sparse Bayesian learning STAP algorithm for the conformal array. The
proposed algorithm has a fast convergence speed.

4.1. Represent training samples using multiple dictionaries

Different from the single dictionary SR-STAP formulation as given
in (24)–(26), we use multiple dictionaries to represent the training
samples adjacent to CUT and express {𝐱𝑙}𝐿𝑙=1 as

𝑙 = 𝐃𝑙𝜸𝑙 + 𝐧𝑙 , 𝑙 = 1, 2,… , 𝐿 (27)

where 𝐃𝑙 and 𝜸𝑙 = [𝛾𝑙,1, 𝛾𝑙,2,… , 𝛾𝑙,2𝐾2 ]𝑇 stand for the dictionary matrix
and sparse coefficient vector of the 𝑙th training sample, respectively.
The construction of 𝐃𝑙 is similar to 𝐃0, except for the difference in the
selection of elevation angle.

One of the advantages of the multi-dictionary model can be demon-
strated by using clutter ridges. Recall Fig. 1, ignore the effect of earth
curvature, the relationship between the normalized Doppler frequency
𝑓 𝑙,𝑖
𝑑,𝑐 , crab angle 𝜑𝑏, elevation angle 𝜃𝑙 or slant range 𝑅𝑙 (𝜃𝑙∕𝑅𝑙), and

azimuth angle 𝜑𝑖 of the 𝑙, 𝑖th clutter patch can be expressed as

𝑓 𝑙,𝑖
𝑑,𝑐 =

2𝐯𝑇 𝐫(𝜃𝑙 , 𝜑𝑖)
𝜆𝑓𝑟

= 𝑣 sin 𝜃𝑙 cos(𝜑𝑖 − 𝜑𝑏) = 𝑣

√

1 − 𝐻2

𝑅2
𝑙

cos(𝜑𝑖 − 𝜑𝑏)
(28)

From (28), we can see that 𝜃𝑙∕𝑅𝑙 is the key point resulting in range-
dependent clutter. In the single-dictionary representation scenario, it is
obvious that 𝑓 𝑙,𝑖

𝑑,𝑐 is a function of 𝜃𝑙∕𝑅𝑙, 𝜑𝑖, and 𝜑𝑏, i.e., 
(

𝜃𝑙∕𝑅𝑙 , 𝜑𝑖, 𝜑𝑏
)

,
the normalized Doppler frequency range of clutter increases as 𝜃𝑙∕𝑅𝑙
increases, thus the clutter ridge distribution changes with the range-
dependent samples. On the contrary, in the multi-dictionary representa-
tion scenario, we take the elevation information 𝜃𝑙∕𝑅𝑙 , 𝑙 = 1, 2,… , 𝐿 of
samples into account, and then 𝑓 𝑙,𝑖

𝑑,𝑐 evolves into a function of 𝜑𝑖 and 𝜑𝑏,
i.e., 𝜃𝑙∕𝑅𝑙

(

𝜑𝑖, 𝜑𝑏
)

, thus clutter ridges occupy the same position under
different dictionaries when multiple dictionaries of the same dimension
(the value of 𝐾 in each dictionary is identical) are applied. It is worth
noting that 𝜑𝑏 corresponds to different looking modes, which only
affects the shape of clutter ridges. For clarity, we also depict the clutter
ridge distribution of samples at different slant ranges 𝑅𝑙 in Fig. 3, where
both the side-looking mode (𝜑𝑏 = 90◦) and the forward-looking mode
(𝜑𝑏 = 0◦) are considered.

It should be noted that, due to the range-variant 𝐃𝑙 , 𝑙 = 1, 2,… , 𝐿
in the multi-dictionary representation scenario, 𝜸𝑙 , 𝑙 = 1, 2,… , 𝐿 exhibit
varying sparsities compared to the CUT, and each 𝜸𝑙 does not share the
same sparsity, i.e.,

E
{

𝜸𝑖𝜸𝐻𝑖
}

≠ E
{

𝜸𝑗𝜸𝐻𝑗
}

, 𝑖, 𝑗 = 1,… , 𝐿, 𝑖 ≠ 𝑗 (29)

Consequently, directly using estimates of multiple sparse coefficient
vectors 𝜸𝑙 ’s to reconstruct the CNCM of CUT will be inaccurate.

Since the traditional clutter compensation algorithms only provide
partial compensation and do not consider changes in the antenna
pattern, the range dependence of training samples is still serious.
Herein, from the perspective of SR, to extract and utilize as much
of the shared sparse components between training samples and CUT
as possible, we constrain the estimated clutter profiles (i.e., 𝜸𝑙) to
share a common sparsity with the CUT, thus mitigating the impact
of non-stationary clutter. Specifically, all the sparse coefficient vectors
𝜸𝑙 ’s are constrained to follow circularly symmetric complex Gaussian

distribution with zero-mean and a shared covariance Ξ0. Under this
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Fig. 3. Clutter ridge distribution in the case of single-dictionary and multi-dictionary representation. (a) Side-looking mode. (b) Forward-looking mode.
Fig. 4. (a) Clutter profile for a side-looking airborne radar. (b) Block structure of the
dictionary matrix and the sparse coefficient vector.

constraint, the joint distribution of 𝜸1, 𝜸2,… , 𝜸𝐿 can thus be expressed
as

𝑝(𝜸1, 𝜸2,… , 𝜸𝐿) =
𝐿
∏

𝑙=1
𝑝(𝜸𝑙) =

𝐿
∏

𝑙=1
 (𝜸𝑙; 𝟎,Ξ0) (30)

Subsequently, the CNCM of the CUT can be reconstructed via 𝐃0,
Ξ0, and 𝜎2𝑛 , i.e.,

�̂� = 1
𝐿

𝐿
∑

𝑙=1
𝐃0E{𝜸𝑙𝜸

𝐻
𝑙 }𝐃𝐻

0 + 𝜎2𝑛𝐈𝑀𝑁 = 𝐃0Ξ0𝐃𝐻
0 + 𝜎2𝑛𝐈𝑀𝑁 (31)

This motivates us to use multi-dictionary matrices corresponding to
training samples to jointly recover the clutter profile. In the following
Section 4.3, we propose an algorithm that can quickly converge to
estimate Ξ0 and 𝜎2𝑛 .

4.2. Clutter block sparse characteristic

Another important property of the airborne polarimetric conformal
array is the clutter block sparsity, which is mainly reflected in two
aspects. On one hand, the clutter profile behaves a special diagonal
clustering structure along the clutter ridge, as shown in Fig. 4(a).
Related work on improving the sparse recovery performance using the
above-mentioned diagonal structure can be found in [34,35]. On the
other hand, the clutter subspace 𝐔 of the 𝑙th range cell is spanned
5

𝑐,𝑙
by 𝐀(𝜃𝑙 , 𝜑𝑖) ⊗ 𝐚𝑑 (𝑓
𝑙,𝑖
𝑑,𝑐 ) corresponding to the 𝑖th clutter patch (𝑖 =

1, 2,… , 𝑁𝑐), i.e.,

{𝐔𝑐,𝑙} = {[𝐀(𝜃𝑙 , 𝜑1)⊗ 𝐚𝑑 (𝑓
𝑙,1
𝑑,𝑐 ),… ,𝐀(𝜃𝑙 , 𝜑𝑁𝑐

)⊗ 𝐚𝑑 (𝑓
𝑙,𝑁𝑐
𝑑,𝑐 )]} (32)

Since 𝐀(𝜃𝑙 , 𝜑𝑖) ∈ C𝑁×2 contains two polarized components on 𝐞𝜃 and 𝐞𝜑,
this leads to a block structure of the dictionary matrix and the sparse
coefficient vector, as shown in Fig. 4(b).

To provide a unified description of single-dictionary and multi-
dictionary scenarios, we re-express 𝐃𝑙 and 𝜸𝑙 in (27) as

𝐃𝑙 = [𝐃𝑙,1,… ,𝐃𝑙,𝑐 ,… ,𝐃𝑙,𝐶 ], 𝜸𝑙 = [𝜸𝑇𝑙,1,… , 𝜸𝑇𝑙,𝑐 ,… , 𝜸𝑇𝑙,𝐶 ]
𝑇 (33)

where 𝐶 = 2𝐾2∕𝑏 is the total number of blocks, and 𝑏 denotes the
block size. In (33), 𝜸𝑙,𝑐 = [𝛾𝑙,(𝑐−1)𝑏+1,… , 𝛾𝑙,𝑐𝑏]𝑇 ∈ C𝑏 and 𝐃𝑙,𝑐 =
[(𝐃𝑙)∶,(𝑐−1)𝑏+1,… , (𝐃𝑙)∶,𝑐𝑏] ∈ C𝑀𝑁×𝑏 are the sub-vector of 𝜸𝑙 and the sub-
dictionary matrix of 𝐃𝑙, respectively. It is not difficult to find that the
block SR problem degenerates into the conventional SR problem when
𝑏 = 1. In the case of polarimetric conformal array, we set 𝑏 = 2.

4.3. Multi-dictionary block sparse Bayesian learning STAP

According to the aforesaid multi-dictionary representation and block
structure, we assume that 𝜸𝑙,𝑐 ’s are IID zero-mean Gaussian with covari-
ance 𝛽𝑐Σ𝑐 for ∀𝑙 ∈ {1,… , 𝐿}. Then, the probability density function
(PDF) of 𝜸𝑙,𝑐 can be expressed as

𝑝(𝜸𝑙,𝑐 ; 𝛽𝑐 ,Σ𝑐 ) =
1

(𝜋𝛽𝑐 )
𝑏
|

|

Σ𝑐
|

|

exp

(

−
𝜸𝐻𝑙,𝑐Σ

−1
𝑐 𝜸𝑙,𝑐
𝛽𝑐

)

𝑙 = 1, 2,… , 𝐿, 𝑐 = 1, 2,… , 𝐶

(34)

where 𝛽𝑐 is the hyperparameter that controls the block sparsity of 𝜸𝑙,
Σ𝑐 ≻ 𝟎 indicates the inner property of 𝜸𝑙,𝑐 , 𝑙 = 1,… , 𝐿. Since the blocks
are independent, the prior PDF of 𝜸𝑙 can be expressed as

𝑝(𝜸𝑙;Ξ0) =
𝐶
∏

𝑐=1
𝑝(𝜸𝑙,𝑐 ; 𝛽𝑐 ,Σ𝑐 ) (35)

where

Ξ0 = blkdiag(𝛽1Σ1,… , 𝛽𝐶Σ𝐶 ) (36)

𝜷 = [𝛽 , 𝛽 ,… , 𝛽 ]𝑇 (37)
1 2 𝐶
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Based on the Bayesian rule and using the fact that 𝐧𝑙 ∼  (𝟎, 𝜎2𝑛
𝑀𝑁 ), the posterior distribution over 𝜸𝑙 is given by

( 𝜸𝑙|| 𝐱𝑙; 𝜎
2
𝑛 ,Ξ0) =

𝑝(𝐱𝑙|| 𝜸𝑙; 𝜎2𝑛 )𝑝(𝜸𝑙;Ξ0)
∫ 𝑝(𝐱𝑙|| 𝜸𝑙; 𝜎2𝑛 )𝑝(𝜸𝑙;Ξ0)𝑑𝜸𝑙

(38)

where

𝑝(𝐱𝑙|| 𝜸𝑙; 𝜎
2
𝑛 ) =

1
(𝜋𝜎2𝑛 )

𝑀𝑁 exp

(

−
‖

‖

𝐱𝑙 − 𝐃𝑙𝜸𝑙‖‖
2
2

𝜎2𝑛

)

(39)

Since both 𝑝(𝜸𝑙;Ξ0) and 𝑝( 𝐱𝑙|| 𝜸𝑙; 𝜎2𝑛 ) follow Gaussian distributions, it
can be derived that the probability density 𝑝( 𝜸𝑙|| 𝐱𝑙; 𝜎2𝑛 ,Ξ0) is also
Gaussian. Therefore, we denote the distribution 𝑝( 𝜸𝑙|| 𝐱𝑙; 𝜎2𝑛 ,Ξ0) by

𝑝( 𝜸𝑙|| 𝐱𝑙; 𝜎
2
𝑛 ,Ξ0) ∼  (𝝁𝑙 ,Ξ𝑙), 𝑙 = 1, 2,… , 𝐿 (40)

For a detailed derivation of 𝝁𝑙 and Ξ𝑙, one can see Appendix, and they
take the form of

𝝁𝑙 = 𝜎−2𝑛 Ξ𝑙𝐃𝐻
𝑙 𝐱𝑙 = Ξ0𝐃𝐻

𝑙 (𝐃𝑙Ξ0𝐃𝐻
𝑙 + 𝜎2𝑛𝐈𝑀𝑁 )−1𝐱𝑙 (41)

Ξ𝑙 = (𝜎−2𝑛 𝐃𝐻
𝑙 𝐃𝑙 +Ξ−1

0 )−1 = Ξ0 −Ξ0𝐃𝐻
𝑙 (𝐃𝑙Ξ0𝐃𝐻

𝑙 + 𝜎2𝑛𝐈𝑀𝑁 )−1𝐃𝑙Ξ0 (42)

from which we can use 𝝁𝑙 as an estimate for 𝜸𝑙. It is important to
emphasize that Ξ0 is a common matrix and thus invariant in different
formulas of 𝝁𝑙 and Ξ𝑙, 𝑙 = 1, 2,… , 𝐿. We have enforced that different
training samples share common sparsity under multi-dictionary rep-
resentation, thus we can jointly use multiple dictionaries to recover
Ξ0.

To do so, we let Γ𝑙 = 𝐃𝑙Ξ0𝐃𝐻
𝑙 + 𝜎2𝑛𝐈𝑀𝑁 . Applying the matrix

inversion lemma, one can readily obtain that

Γ−1
𝑙 = 𝜎−2𝑛 𝐈𝑀𝑁 − 𝜎−2𝑛 𝐃𝑙Ξ𝑙𝐃𝐻

𝑙 𝜎−2𝑛 (43)

Based on Appendix, the joint PDF of {𝐱𝑙}𝐿𝑙=1 is given by

𝑝(𝐗; 𝜎2𝑛 ,Ξ0) =
𝐿
∏

𝑙=1
𝑝(𝐱𝑙; 𝜎2𝑛 ,Ξ0) =

𝐿
∏

𝑙=1
∫ 𝑝( 𝐱𝑙|| 𝜸𝑙; 𝜎

2
𝑛 )𝑝(𝜸𝑙;Ξ0)𝑑𝜸𝑙

=
𝐿
∏

𝑙=1
∫  (𝐱𝑙;𝐃𝑙𝜸𝑙 , 𝜎2𝑛𝐈𝑀𝑁 ) (𝜸𝑙; 𝟎,Ξ0)𝑑𝜸𝑙

=
𝐿
∏

𝑙=1
 (𝐱𝑙; 𝟎,Γ𝑙)

(44)

On this basis, we can obtain the type-II maximum likelihood (ML)
estimate of 𝜎2𝑛 and Ξ0 by solving the following problem

{�̂�2𝑛 , Ξ̂0} = argmin
𝜎2𝑛 ,Ξ0

0(𝜎2𝑛 ,Ξ0) (45)

with
0(𝜎2𝑛 ,Ξ0) = − ln 𝑝(𝐱1, 𝐱2,… , 𝐱𝐿; 𝜎2𝑛 ,Ξ0)

=
𝐿
∑

𝑙=1

(

ln |
|

Γ𝑙
|

|

+ 𝐱𝐻𝑙 Γ−1
𝑙 𝐱𝑙

)

+ 𝐿𝑀𝑁 ln𝜋
(46)

Substituting (43) into (46), using the fact that (𝐈+𝐀𝐁)−1𝐀=𝐀(𝐈 + 𝐁𝐀)−1,
and omitting the constant term, we have

0(𝜎2𝑛 ,𝜩0) ∝
𝐿
∑

𝑙=1

(

ln |
|

Γ𝑙
|

|

+ 𝜎2𝑛 ‖‖𝐱𝑙 − 𝐃𝑙𝝁𝑙
‖

‖

2
2 + 𝝁𝐻

𝑙 𝜩−1
0 𝝁𝑙

)

≜ 1(𝜎2𝑛 ,𝜩0)

(47)

To solve the problem (45), we can apply the expectation maximiza-
tion (EM) algorithm and take the derivatives of 1(𝜎2𝑛 ,Ξ0) with respect
to (w.r.t) Σ𝑐 , 𝜎2𝑛 , and 𝛽𝑐 . The updating rules for the calculations of
Σ𝑐 , 𝜎2𝑛 , and 𝛽𝑐 can thus be obtained by setting the derivative as zero,
respectively.

Considering the limited training samples, estimating Σ𝑐 ∀𝑐 will lead
to overfitting [36,37], thus we constraint Σ1 = ⋯ = Σ𝐶 = Σ to avoid
6

overfitting. Note that the clutter-to-noise ratio (CNR) is relatively high
in practical clutter environments, this constraint does not affect the
global sparsest solution [38]. According to (36), Ξ0 can be expressed
as

Ξ0 = diag(𝜷)⊗Σ (48)

From (44), we can notice that only 𝑝(𝜸𝑙;Ξ0) is related to Σ. Let

𝜕
𝐿
∑

𝑙=1
E𝜸𝑙

{

ln 𝑝
(

𝜸𝑙;Ξ0
)

|

|

|

𝐱𝑙; 𝜎2𝑛 ,Ξ0

}

∕𝜕Σ = 0 (49)

the update of Σ can be easily obtained by

Σ(𝑡) = 1
𝐿𝐶

𝐿
∑

𝑙=1

𝐶
∑

𝑐=1

(

Ξ𝑙,𝑐 + 𝝁𝑙,𝑐𝝁𝐻
𝑙,𝑐

)

∕𝛽(𝑡−1)𝑐 (50)

here 𝝁𝑙,𝑐 = [𝜇𝑙,(𝑐−1)𝑏+1,… , 𝜇𝑙,𝑐𝑏]𝑇 , Ξ𝑙,𝑐 = Ξ𝑙[(𝑐−1)𝑏+1 ∶ 𝑐𝑏, (𝑐−1)𝑏+1 ∶
𝑏], and the superscript (𝑡) represents the result of the (𝑡)th iteration. For
lower computational complexity, one can ignore the slight impact of

he intra-block correlation, and then constrain Σ = 𝐈𝑏.
Similarly, we can obtain the update rule of 𝜎2𝑛 . Notice from (44) that

only 𝑝( 𝐱𝑙|| 𝜸𝑙; 𝜎2𝑛 ) depends on 𝜎2𝑛 . Let

𝜕
𝐿
∑

𝑙=1
E𝜸𝑙

{

ln 𝑝
(

𝐱𝑙
|

|

|

𝜸𝑙; 𝜎2𝑛
)

|

|

|

𝐱𝑙; 𝜎2𝑛 ,Ξ0

}

∕𝜕𝜎2𝑛 = 0 (51)

We can obtain the stationary point of 𝜎2𝑛 and the following update rule

(

𝜎2𝑛
)(𝑡) =

∑𝐿
𝑙=1

‖

‖

𝐱𝑙 − 𝐃𝑙𝝁𝑙
‖

‖

2
2

𝑀𝑁𝐿 −
∑𝐿

𝑙=1 Tr(Ξ
(𝑡−1)
0 𝐃𝐻

𝑙 (Γ(𝑡−1)
𝑙 )

−1
𝐃𝑙)

(52)

For the update of 𝛽𝑐 , the traditional EM algorithm has a slow
earning rule, thus cannot be applied in real-time. To alleviate this
ssue, we refer to [22] and utilize the modified BSBL-BO algorithm
o accelerate convergence for KA-MDBSBL STAP. Specifically, for each
teration step, the modified BSBL-BO algorithm minimizes the upper
ound of the function ∑𝐿

𝑙=1 ln ||Γ𝑙
|

|

in 1(𝜎2𝑛 ,𝜩0), using the fact that
𝐿

𝑙=1
ln |
|

Γ𝑙
|

|

≤
𝐿
∑

𝑙=1
ln |Γ(𝑡−1)

𝑙 |

+
𝐿
∑

𝑙=1

𝐶
∑

𝑐=1
Tr

(

𝐃𝐻
𝑙,𝑐 (Γ

(𝑡−1)
𝑙 )

−1
𝐃𝑙,𝑐Σ

)

(

𝛽𝑐 − 𝛽(𝑡−1)𝑐
)

(53)

ubstituting (53) into (47), we obtain the following upper bound of
1(𝜎2𝑛 ,Ξ0)

2(𝜎2𝑛 ,Ξ0) ≜
𝐿
∑

𝑙=1

(

ln |Γ(𝑡−1)
𝑙 | + 𝜎2𝑛 ‖‖𝐱𝑙 − 𝐃𝑙𝝁𝑙

‖

‖

2
2 + 𝝁𝐻

𝑙 Ξ−1
0 𝝁𝑙

)

+
𝐿
∑

𝑙=1

𝐶
∑

𝑐=1
Tr

(

𝐃𝐻
𝑙,𝑐 (Γ

(𝑡−1)
𝑙 )

−1
𝐃𝑙,𝑐Σ

)

(

𝛽𝑐 − 𝛽(𝑡−1)𝑐
)

(54)

fter some calculations, we derive the derivative of 2(𝜎2𝑛 ,Ξ0) w.r.t 𝛽𝑐
s

𝜕2(𝜎2𝑛 ,Ξ0)
𝜕𝛽𝑐

=
𝐿
∑

𝑙=1

(

Tr
(

(Γ(𝑡−1)
𝑙 )

−1
𝐃𝑙,𝑐Σ𝐃𝐻

𝑙,𝑐

)

−
𝝁𝐻
𝑙,𝑐Σ

−1𝝁𝑙,𝑐

𝛽2𝑐

)

(55)

Let 𝜕2(𝜎2𝑛 ,Ξ0)∕𝜕𝛽𝑐 = 0, the update of 𝛽𝑐 can thus be expressed as

𝛽(𝑡)𝑐 =

√

√

√

√

√

√

∑𝐿
𝑙=1 𝝁

𝐻
𝑙,𝑐 (Σ

(𝑡−1))−1𝝁𝑙,𝑐

∑𝐿
𝑙=1 Tr

(

(Γ(𝑡−1)
𝑙 )

−1
𝐃𝑙,𝑐Σ

(𝑡−1)𝐃𝐻
𝑙,𝑐

)
(56)

owever, this update rule of 𝛽𝑐 cannot intuitively reflect the change
rom 𝛽(𝑡−1)𝑐 to 𝛽(𝑡)𝑐 , and the update speed is fixed. Immediately, substi-
uting (41) into (56) yields

(𝑡)
𝑐 = 𝛽(𝑡−1)𝑐

√

√

√

√

√

√

∑𝐿
𝑙=1 𝐱

𝐻
𝑙 (Γ(𝑡−1)

𝑙 )
−1
𝐃𝑙,𝑐Σ

(𝑡−1)𝐃𝐻
𝑙,𝑐 (Γ

(𝑡−1)
𝑙 )

−1
𝐱𝑙

∑𝐿 Tr
(

𝐃𝐻 (Γ(𝑡−1))
−1
𝐃 Σ(𝑡−1)

)
(57)
𝑙=1 𝑙,𝑐 𝑙 𝑙,𝑐
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It is obvious that a self-regulating coefficient term controls the update
process from 𝛽(𝑡−1)𝑐 to 𝛽(𝑡)𝑐 , which is similar to the learning rate in
machine learning. Since the self-regulating coefficient term in (57)
always appears as the root form, the update speed is still fixed. To
further control the speed of convergence, we introduce a parameter ℎ
to modify the learning rule for 𝛽𝑐 , so that the self-regulating coefficient
term is not limited to a specific form, i.e.,

𝛽(𝑡)𝑐 = 𝛽(𝑡−1)𝑐

⎛

⎜

⎜

⎜

⎝

∑𝐿
𝑙=1 𝐱

𝐻
𝑙 (Γ(𝑡−1)

𝑙 )
−1
𝐃𝑙,𝑐Σ

(𝑡−1)𝐃𝐻
𝑙,𝑐 (Γ

(𝑡−1)
𝑙 )

−1
𝐱𝑙

∑𝐿
𝑙=1 Tr

(

𝐃𝐻
𝑙,𝑐 (Γ

(𝑡−1)
𝑙 )

−1
𝐃𝑙,𝑐Σ

(𝑡−1)
)

⎞

⎟

⎟

⎟

⎠

ℎ

(58)

Repeating the above iteration steps, we can ultimately obtain the
estimates of Ξ0 and 𝜎2𝑛 . The above iteration process terminates until
reaching the specified number of iterations (denoted as 𝑡max) or the
following condition is satisfied

‖Ξ(𝑡)
0 −Ξ(𝑡−1)

0 ‖

2
𝐹 ∕‖Ξ

(𝑡)
0 ‖

2
𝐹 ≤ 𝜏 (59)

here 𝜏 is the preset convergence threshold.
Finally, the CNCM of the CUT can be reconstructed via (31) using

he estimated Ξ0 and 𝜎2𝑛 . The proposed KA-MDBSBL STAP algorithm is
ummarized in Algorithm 1.

Algorithm 1 KA-MDBSBL conformal array STAP

Input:
{

𝐱𝑙
}𝐿
𝑙=1,

{

𝐃𝑙
}𝐿
𝑙=1, ℎ, 𝑡max or 𝜏

1: Initialize: 𝛽𝑐 = 1 ∀𝑐, 𝜎2𝑛 = 10, 𝚺 = 𝐈𝑏, and 𝚵0 = diag(𝜷)⊗ 𝐈𝑏
2: Repeat
3: Compute 𝚪(𝑡−1)

𝑙 = 𝐃𝑙𝚵
(𝑡−1)
0 𝐃𝐻

𝑙 +
(

𝜎2𝑛
)(𝑡−1)𝐈𝑀𝑁

4: Compute 𝝁(𝑡−1)
𝑙 = 𝚵(𝑡−1)

0 𝐃𝐻
𝑙 (𝚪(𝑡−1)

𝑙 )
−1
𝐱𝑙

5: Update
(

𝜎2𝑛
)(𝑡) via (52)

6: Update 𝛽(𝑡)𝑐 via (58)
7: Until 𝑡 = 𝑡max or (59) is satisfied
8: Compute �̂� via (31)
utput: �̂�

4.4. Computational complexity

In this subsection, we analyze the computational complexity of
the proposed KA-MDBSBL STAP algorithm. In each iteration, we con-
strain Σ = 𝐈𝑏 by the above analysis, thus omitting the iterative
rocess of Σ, resulting in Ξ0 a diagonal matrix. Then, the computation

complexity of the proposed algorithm is dominated by the updating
rule for 𝜷, which consists of two parts. The first part is comput-
ing Γ𝑙 and Γ−1

𝑙 , with computational complexities ((𝐾𝑀𝑁)2) and
((𝑀𝑁)3), respectively. The second part is the update in (58) with
computational complexity (𝐾2𝑀𝑁(𝑀𝑁 + 𝑏 + 1)). Therefore, the

verall computation complexity in each iteration is (𝐿(𝐾2𝑀𝑁(𝑀𝑁+
+ 1)+(𝐾𝑀𝑁)2 + (𝑀𝑁)3)). Compared to the classical fast converging
BL (FCSBL) STAP algorithm [24] (with a computational complexity
(𝐾2𝑀𝑁(𝑀𝑁 + 𝐿)+(𝐾𝑀𝑁)2 + (𝑀𝑁)3), the proposed algorithm has
n increased computational complexity.

. Simulations

In this section, we present various simulations to assess the perfor-
ance of the proposed method. The echo signal is generated via the
odel mentioned in Section 2. Specifically, each range cell contains
61 clutter patches, and the clutter polarization covariance matrix 𝐑𝑝 is

determined following the Ref. [9]. We assume that the target is located

at the mainlobe axis (𝜃0, 𝜑0) with scattering matrix 𝐒𝑡 =
[

0.5𝑗 −𝑗
−𝑗 0.5

]

.

adar system parameters are listed in Table 1.
To represent the influence of clutter non-stationary, we consider

wo typical looking modes (side-looking with 𝜑𝑏 = 90◦ and forward-
ooking with 𝜑 = 0◦) at two different slant ranges 𝑅 (1.5𝐻 and 8𝐻),
7

𝑏 𝑡 a
Table 1
Radar system parameters.

Parameters Values Parameters Values

Platform altitude 6 km Platform velocity 150 m/s
Wavelength 0.3 m Bandwidth 5 MHz
PRF 2000 Hz Pulse number 8
Element number 11 CNR 40 dB

Table 2
The average computational time of SR-based algorithms.

Algorithm Global runtime (s) Single iteration runtime (s)

FCSBL 17.2324 0.8206
BSBL 32.7121 1.0552
KA-MDBSBL 76.2943 3.6331

respectively. For comparison, conventional sample matrix inversion
(SMI) method and the ADC method [15] are considered. The number
of training samples for these two methods is set to 𝐿 = 2𝑀𝑁 . Addition-
ally, several SBL methods, such as the classical FCSBL algorithm [24]
and block SBL (BSBL) algorithm [22] with block size 𝑏 = 2, are
also tested for comparison. For the proposed KA-MDBSBL method, we
employ the prior knowledge of the array manifold 𝐀(𝜃, 𝜑) and the
elevation angle 𝜃𝑙 , 𝑙 = 1, 2,… , 𝐿 corresponding to range cells where
training samples are located, uniformly discretize 𝐾 azimuth angles
{

𝜑𝑘
}𝐾
𝑘=1 in the azimuthal dimension and construct multi-dictionary

matrices 𝐃𝑙 , 𝑙 = 1, 2,… , 𝐿 similar to (19). Unless otherwise stated, the
number of training samples and discrete azimuth angles for SR-based
methods is chosen as 𝐿 = 8 and 𝐾 = 6𝑁 . The initialization parameters
are set as follows: 𝛽𝑐 = 1,∀𝑐, 𝜎2𝑛 = 10, Σ = 𝐈𝑏, 𝑡max = 50, 𝜏 = 10−3,
and ℎ = 1. The output signal-to-clutter-plus-noise ratio (SCNR) loss is
adopted to quantify the performance of clutter cancellation, which is
defined as follows

SCNR loss =
𝜎2𝑛

|

|

|

�̂�𝐻𝐚𝑝𝑠𝑑
|

|

|

2

�̂�𝐻𝐑�̂� ⋅ 𝐚𝐻𝑝𝑠𝑑𝐚𝑝𝑠𝑑
(60)

esides, the average SCNR loss is depicted under different training
ample numbers. In this case, we take the average value of the SCNR
oss over the entire normalized Doppler frequency range. All results are
verages from 100 Monte-Carlo trials.

.1. Computational efficiency of SR-based algorithms

In the first experiment, we present the computational time of SR-
ased methods, including average global runtime until convergence
nd average single iteration runtime, as shown in Table 2. For a fair
omparison, the experiment results of SR-based methods are obtained
y using MATLAB R2021b with the same frame. The hardware config-
ration is CPU AMD Ryzen 9 7845HX with Radeon Graphics 3 GHz and
AM 16 GB.

As we can see, FCSBL has the shortest computational time, while
A-MDBSBL has the longest computational time. However, according

o the following simulation experiments, the excellent clutter sup-
ression performance of KA-MDBSBL is the most suitable for the po-
arimetric conformal array among these algorithms. To improve the
omputational efficiency of the proposed method, we will consider par-
llel processing and extend KA-MDBSBL to the tensor-based framework
n future work.

.2. Performance comparison in convergence and clutter spectrum estima-
ion

In this simulation, we first evaluate the convergence performance
f SR-based algorithms. Specifically, the cost functions for KA-MDBSBL
nd FCSBL/BSBL are 1 ∑𝐿 (

ln |Γ | + Tr(Γ−1𝐱 𝐱𝐻 )
)

and ln |Γ | +
𝐿 𝑙=1 | 𝑙| 𝑙 𝑙 𝑙 | 0|
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Fig. 5. Value of cost function versus the number of iterations.

Tr(Γ−1
0 �̄�) [24], respectively. Fig. 5 shows curves of cost function value

versus the iteration number, in the side-looking case with 𝑅𝑡 = 8𝐻 .
As we can see, all of the algorithms tested can converge within 30
iterations, and the KA-MDBSBL nearly has the fastest convergence
speed. The FCSBL has almost the same convergence speed as KA-
MDBSBL, but the final cost function value of FCSBL is higher than that
of KA-MDBSBL and BSBL. Although BSBL has the slowest convergence
speed, BSBL converges to almost the same value as KA-MDBSBL. The
above simulation results confirm the effectiveness and fast convergence
of the proposed algorithm.

Next, we compare the MVDR spectrum estimation accuracy of dif-
ferent algorithms to demonstrate clutter suppression performance for
short-range clutter. Figs. 6 and 7 show the MVDR spectrums in side-
looking mode and forward-looking mode, respectively. It is clear that
the MVDR spectrums of SMI and ADC deviate significantly from the
clairvoyant one, especially in forward-looking mode. On the contrary,
the SR-based methods achieve a higher CNCM estimation precision,
with KA-MDBSBL being closest to the clairvoyant one. Due to the
influence of non-stationary clutter and the geometry of conformal
arrays, the clutter spectrum estimation accuracy of FCSBL method is
8

unsatisfactory although it has a fast convergence speed. By considering
the block structure of the dictionary matrix and sparse coefficient
vector, the MVDR spectrum estimation accuracy of BSBL is better
than that of FCSBL. The above simulation results demonstrate the
superior performance of the proposed KA-MDBSBL algorithm in CNCM
estimation for conformal arrays.

5.3. Performance comparison in output SCNR loss

To essentially assess the clutter suppression performance of the
above algorithms, Figs. 8 and 9 exhibits the SCNR loss curves under
different clutter non-stationary situations. Specifically, Fig. 8 provides
the SCNR loss curves for various algorithms when 𝑅𝑡 = 1.5𝐻 . Due
to their dependence on the number of samples (𝐿 = 2𝑀𝑁), both
ADC and SMI suffer from significant performance loss. Although BSBL
and FCSBL reconstruct CNCM through fewer samples (𝐿 = 8), they
still cannot achieve satisfactory clutter suppression performance due to
the heterogeneity of training samples. The heterogeneity is particularly
severe for the forward-looking mode.

Fig. 9 provides the SCNR loss curves for various algorithms when
𝑅𝑡 = 8𝐻 , a case where the clutter non-stationary is slight. In this
case, ADC and SMI have an approximately 3 dB average output SCNR
loss compared to the optimal result (black curve). Although the clutter
suppression performance of BSBL and FCSB has improved, there is
still a gap between their performance and the optimal one due to the
presence of non-stationary (weaker) clutter.

On the contrary, the proposed KA-MDBSBL algorithm designs mul-
tiple dictionaries based on prior knowledge to reconstruct the CNCM,
which ensures that the clutter ridges overlap under the multi-dictionary
representation. Meanwhile, the intrinsic sparsity of all training samples
is controlled by the same second-order statistic to combat the non-
stationary clutter. Consequently, the KA-MDBSBL algorithm achieves
the clutter suppression performance closest to the optimal result. In
addition, due to the consideration of the block structure of the dic-
tionary matrix and sparse coefficient vector, the clutter suppression
performance of KA-MDBSBL when 𝑏 = 2 is better than that when 𝑏 = 1,
as shown in Figs. 8 and 9.

In order to further verify the impact of block size 𝑏 on clutter
suppression performance, Fig. 10 provides the SCNR loss curves of
Fig. 6. Short-range clutter MVDR spectrums estimated by various methods in side-looking mode. (a) Clairvoyant MVDR spectrum. (b) SMI. (c) ADC. (d) FCSBL. (e) BSBL. (f)
KA-MDBSBL with 𝑏 = 2.
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Fig. 7. Short-range clutter MVDR spectrums estimated by various methods in forward-looking mode. (a) Clairvoyant MVDR spectrum. (b) SMI. (c) ADC. (d) FCSBL. (e) BSBL. (f)
KA-MDBSBL with 𝑏 = 2.

Fig. 8. The SCNR loss curves of various methods with 𝑅𝑡 = 1.5𝐻 under the ideal case. (a) Side-looking mode. (b) Forward-looking mode.

Fig. 9. The SCNR loss curves of various methods with 𝑅𝑡 = 8𝐻 under the ideal case. (a) Side-looking mode. (b) Forward-looking mode.
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K

Fig. 10. The SCNR loss curves of KA-MDBSBL with different block sizes (side-looking
mode, 𝑅𝑡 = 8𝐻).

A-MDBSBL for different block sizes when 𝑅𝑡 = 8𝐻 . It is evident
that only when the block size matches the intrinsic structure of the
dictionary matrix and sparse coefficient vector (i.e., 𝑏 = 2) can we
achieve satisfactory performance.

5.4. Average SCNR loss with different sample sizes

Now we evaluate the impact of the training sample number on the
clutter suppression performance. Figs. 11 and 12 show the performance
curves for 𝑅𝑡 = 1.5𝐻 under forward-looking mode and 𝑅𝑡 = 8𝐻
under side-looking mode, respectively. Specifically, Figs. 11(a) and
12(a) depict the curves of average SCNR loss, while Figs. 11(b) and
12(b) show the curves of average SCNR loss deviation (relative to the
optimal value).

According to the results in Figs. 11 and 12, ADC and SMI converge
quite slowly, while ADC owns a better performance as the number
of training samples increases, especially in the case when the clutter
non-stationary is severe. For the SBL-based methods, BSBL and FCSBL
gradually converge as the number of training samples increases in the
slight clutter non-stationary case. However, BSBL and FCSBL do not
converge as the number of training samples increases in the severe non-
stationary case. For the proposed KA-MDBSBL algorithm, it converges
quickly in both cases. As the number of training samples continues to
increase, the performance of KA-MDBSBL gradually approaches the op-
timal one. The above results validate the effectiveness of the proposed
algorithm in suppressing non-stationary clutter.

5.5. Performance with non-ideal factors

In the last simulation, we investigated the impact of non-ideal
factors on the proposed algorithm. We consider two common non-ideal
factors, including angle-independent array gain-phase (GP) error [11,
12] and intrinsic clutter motion (ICM).

Specifically, the GP error is modeled as

𝐞𝑠 = [(1 − 𝜀𝑎,1)𝑒𝑗𝜀𝑏,1 ,… , (1 − 𝜀𝑎,𝑁 )𝑒𝑗𝜀𝑏,𝑁 ]𝑇 (61)

where 𝜀𝑎,𝑛 and 𝜀𝑏,𝑛, 𝑛 = 1,… , 𝑁 follow a uniform distribution within
[0, 𝜀𝑎,max] and [−𝜀𝑏,max∕2, 𝜀𝑏,max∕2], respectively. Fig. 13(a) presents
the performance in the forward-looking case with 𝑅𝑡 = 1.5𝐻 and
(𝜀𝑎,max, 𝜀𝑏,max) = (3%, 𝜋∕36).

In the ICM case, we consider the Gaussian model proposed by Ward
in [31], having
10

𝐓 = Toeplitz(𝑒𝑡(0), 𝑒𝑡(1),… , 𝑒𝑡(𝑀 − 1)) (62)
𝑒𝑡(𝑚) = exp

{

−
8𝜋2𝜎2𝑣𝑇

2
𝑟 𝑚

2

𝜆2

}

, 𝑚 = 0, 1,… ,𝑀 − 1 (63)

where 𝜎2𝑣 denotes the velocity standard deviation and 𝑇𝑟 = 1∕𝑓𝑟 is the
pulse repetition interval. Fig. 13(b) presents the performance in the
forward-looking case with 𝑅𝑡 = 1.5𝐻 and 𝜎2𝑣 = 1.

Obviously, the mismatch between the dictionary and the data causes
the performance deterioration for SBL-based algorithms. As expected,
KA-MDBSBL presents the least deterioration and is closest to the opti-
mal result. The above results illustrate that the KA-MDBSBL can achieve
far better performance than other methods and is more suitable for
conformal arrays.

6. Conclusions

In this paper, we have proposed a fast converging sparsity-aware
STAP approach named KA-MDBSBL for the polarimetric conformal
array. First, the signal model for airborne radar with a polarimetric
conformal array has been introduced. Next, the prior knowledge of
conformal array configuration and radar system parameters is utilized
to design multi-dictionary matrices for training samples and the CUT,
and carefully analyze the multi-dictionary problem. Meantime, the
block structure of the dictionary matrix and sparse coefficient vector
are also exploited to recover the clutter and noise power. Finally, the
clutter plus noise covariance matrix is reconstructed from the precisely
estimated clutter and noise power, as well as the dictionary matrix
corresponding to the CUT. Simulation results demonstrate that the
proposed algorithm can effectively improve the output performance
under different non-stationary clutter environments.
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Fig. 11. The average SCNR loss curves of various methods in forward-looking mode and 𝑅𝑡 = 1.5𝐻 . (a) Average SCNR loss versus the number of training samples. (b) Average
SCNR loss difference versus the number of training samples.
Fig. 12. The average SCNR loss curves of various methods in side-looking mode and 𝑅𝑡 = 8𝐻 . (a) Average SCNR loss versus the number of training samples. (b) Average SCNR
loss difference versus the number of training samples.
Fig. 13. The SCNR loss curves of various methods in forward-looking mode and 𝑅𝑡 = 1.5𝐻 under the non-ideal case. (a) Array GP error case. (b) ICM case.
ppendix. Derivation of the posterior distribution with multi-
ictionary representation

Based on the Bayesian rule, having

( 𝜸𝑙|| 𝐱𝑙; 𝜎
2
𝑛 ,Ξ0) =

𝑝(𝐱𝑙|| 𝜸𝑙; 𝜎2𝑛 )𝑝(𝜸𝑙;Ξ0)
2

(A.1)
11

∫ 𝑝(𝐱𝑙|| 𝜸𝑙; 𝜎𝑛 )𝑝(𝜸𝑙;Ξ0)𝑑𝜸𝑙
where

𝑝(𝐱𝑙
|

|

|

𝜸𝑙; 𝜎2𝑛 ) =
1
2 𝑀𝑁 exp

(

−
‖

‖

𝐱𝑙 − 𝐃𝑙𝜸𝑙‖‖
2
2

2

)

(A.2)

(𝜋𝜎𝑛 ) 𝜎𝑛
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and

𝑝(𝜸𝑙;Ξ0) =
1

𝜋𝑀𝑁 |

|

Ξ0
|

|

exp
(

−𝜸𝐻𝑙 Ξ−1
0 𝜸𝑙

)

(A.3)

For notational simplicity, omitting the constant term, then the numer-
ator term in (A.1) can be expressed as

𝑝(𝐱𝑙
|

|

|

𝜸𝑙; 𝜎2𝑛 )𝑝(𝜸𝑙;Ξ0) = 𝑝(𝐱𝑙 , 𝜸𝑙; 𝜎2𝑛 ,Ξ0)

∝ exp
(

−𝜎−2𝑛
‖

‖

𝐱𝑙 − 𝐃𝑙𝜸𝑙‖‖
2
2 − 𝜸𝐻𝑙 Ξ−1

0 𝜸𝑙
) (A.4)

The denominator term in (A.1) is well-known as the marginal likeli-
hood, and takes the form of

𝑝(𝐱𝑙; 𝜎2
𝑛 ,Ξ0) = ∫ 𝑝(𝐱𝑙

|

|

|

𝜸𝑙; 𝜎2
𝑛 )𝑝(𝜸𝑙;Ξ0)𝑑𝜸𝑙

∝ ∫ exp
(

−𝜎−2
𝑛

‖

‖

𝐱𝑙 − 𝐃𝑙𝜸𝑙‖‖
2
2 − 𝜸𝐻𝑙 Ξ−1

0 𝜸𝑙
)

𝑑𝜸𝑙

= ∫ exp

(

−

(

𝐱𝐻𝑙 𝐱𝑙 − 𝜸𝐻𝑙 𝐃𝐻
𝑙 𝐱𝑙 − 𝐱𝐻𝑙 𝐃𝑙𝜸𝑙 + 𝜸𝐻𝑙 𝐃𝐻

𝑙 𝐃𝑙𝜸𝑙
𝜎2
𝑛

+ 𝜸𝐻𝑙 Ξ−1
0 𝜸𝑙

))

𝑑𝜸𝑙

(A.5)

Combining quadratic terms related to 𝜸𝑙, let Ξ𝑙 =
(

𝜎−2𝑛 𝐃𝐻
𝑙 𝐃𝑙 +Ξ−1

0
)−1

and use the fact that 𝐈2𝐾2 = Ξ𝑙Ξ
−1
𝑙 , (A.5) yields

𝑝(𝐱𝑙; 𝜎2
𝑛 ,Ξ0)

∝ ∫ exp

(

−

(

𝐱𝐻𝑙 𝐱𝑙 − 𝜸𝐻𝑙 Ξ−1
𝑙 Ξ𝑙𝐃𝐻

𝑙 𝐱𝑙 − 𝐱𝐻𝑙 𝐃𝑙Ξ𝑙Ξ
−1
𝑙 𝜸𝑙

𝜎2
𝑛

+ 𝜸𝐻𝑙 Ξ−1
𝑙 𝜸𝑙

))

𝑑𝜸𝑙

(A.6)

Let 𝝁𝑙 = 𝜎−2𝑛 Ξ𝑙𝐃𝐻
𝑙 𝐱𝑙 and introduce item 𝝁𝐻

𝑙 Ξ−1
𝑙 𝝁𝑙, (A.6) yields

𝑝(𝐱𝑙 ; 𝜎2
𝑛 ,Ξ0)

∝ ∫ exp

(

−

(

𝐱𝐻𝑙 𝐱𝑙
𝜎2
𝑛

− 𝜸𝐻𝑙 Ξ−1
𝑙 𝝁𝑙 − 𝝁𝐻

𝑙 Ξ−1
𝑙 𝜸𝑙 + 𝜸𝐻𝑙 Ξ−1

𝑙 𝜸𝑙 + 𝝁𝐻
𝑙 Ξ−1

𝑙 𝝁𝑙 − 𝝁𝐻
𝑙 Ξ−1

𝑙 𝝁𝑙

))

𝑑𝜸𝑙

= ∫ exp

(

−

(

𝐱𝐻𝑙 𝐱𝑙
𝜎2
𝑛

− 𝝁𝐻
𝑙 Ξ−1

𝑙 𝝁𝑙 +
(

𝜸𝑙 − 𝝁𝑙
)𝐻

Ξ−1
𝑙

(

𝜸𝑙 − 𝝁𝑙
)

))

𝑑𝜸𝑙

(A.7)

Substituting 𝝁𝑙 = 𝜎−2𝑛 Ξ𝑙𝐃𝐻
𝑙 𝐱𝑙 into 𝐱𝐻𝑙 𝐱𝑙

𝜎2𝑛
−𝝁𝐻

𝑙 Ξ−1
𝑙 𝝁𝑙 and combining (43),

we have
𝐱𝐻𝑙 𝐱𝑙
𝜎2𝑛

− 𝝁𝐻
𝑙 Ξ−1

𝑙 𝝁𝑙 =
𝐱𝐻𝑙 𝐱𝑙
𝜎2𝑛

− 𝜎−2𝑛 𝐱𝐻𝑙 𝐃𝑙Ξ𝑙Ξ
−1
𝑙 Ξ𝑙𝐃𝐻

𝑙 𝐱𝑙𝜎−2𝑛

= 𝐱𝐻𝑙
(

𝜎−2𝑛 𝐈𝑀𝑁 − 𝜎−2𝑛 𝐃𝑙Ξ𝑙𝐃𝐻
𝑙 𝜎−2𝑛

)

𝐱𝑙
= 𝐱𝐻𝑙 Γ−1

𝑙 𝐱𝑙

(A.8)

Substituting (A.8) into (A.7) and using the fact that the integral of the
probability density over its domain is equal to 1, (A.6) yields

𝑝(𝐱𝑙; 𝜎2𝑛 ,Ξ0) ∝ ∫ exp
(

−
(

𝐱𝐻𝑙 Γ−1
𝑙 𝐱𝑙 +

(

𝜸𝑙 − 𝝁𝑙
)𝐻

Ξ−1
𝑙

(

𝜸𝑙 − 𝝁𝑙
)

))

𝑑𝜸𝑙

= exp
(

−𝐱𝐻𝑙 Γ−1
𝑙 𝐱𝑙

)

∫ exp
(

−
(

𝜸𝑙 − 𝝁𝑙
)𝐻

Ξ−1
𝑙

(

𝜸𝑙 − 𝝁𝑙
)

)

𝑑𝜸𝑙

= exp
(

−
(

𝐱𝐻𝑙 Γ−1
𝑙 𝐱𝑙

))

∝ 
(

𝐱𝑙; 𝟎,Γ𝑙
)

(A.9)

According to (A.9), (A.4) yields

𝑝(𝐱𝑙 , 𝜸𝑙; 𝜎2𝑛 ,Ξ0) ∝ exp
(

−𝐱𝐻𝑙 Γ−1
𝑙 𝐱𝑙

)

exp
(

−
(

𝜸𝑙 − 𝝁𝑙
)𝐻

Ξ−1
𝑙

(

𝜸𝑙 − 𝝁𝑙
)

)

(A.10)

Substituting (A.9) and (A.10) into (A.1), we finally obtain

𝑝(𝜸𝑙
|

|

|

𝐱𝑙; 𝜎2𝑛 ,Ξ0) ∝ exp
(

−
(

𝜸𝑙 − 𝝁𝑙
)𝐻

Ξ−1
𝑙

(

𝜸𝑙 − 𝝁𝑙
)

)

( )

(A.11)
12

∝  𝝁𝑙 ,Ξ𝑙
where 𝝁𝑙 = 𝜎−2𝑛 Ξ𝑙𝐃𝐻
𝑙 𝐱𝑙 and Ξ𝑙 =

(

𝜎−2𝑛 𝐃𝐻
𝑙 𝐃𝑙 +Ξ−1

0
)−1. Furthermore,

using the fact that (𝐈 + 𝐀𝐁)−1𝐀 = 𝐀(𝐈 + 𝐁𝐀)−1, 𝝁𝑙 yields

𝝁𝑙 = 𝜎−2𝑛 Ξ𝑙𝐃𝐻
𝑙 𝐱𝑙

= 𝜎−2𝑛
(

𝜎−2𝑛 𝐃𝐻
𝑙 𝐃𝑙 +Ξ−1

0
)−1𝐃𝐻

𝑙 𝐱𝑙
=
(

𝐃𝐻
𝑙 𝐃𝑙 + 𝜎2𝑛Ξ

−1
0
)−1𝐃𝐻

𝑙 𝐱𝑙
=
(

𝜎2𝑛Ξ
−1
0

(

𝐈2𝐾2 + 𝜎−2𝑛 Ξ0𝐃𝐻
𝑙 𝐃𝑙

))−1𝐃𝐻
𝑙 𝐱𝑙

= 𝜎−2𝑛
(

𝐈2𝐾2 + 𝜎−2𝑛 Ξ0𝐃𝐻
𝑙 𝐃𝑙

)−1
Ξ0𝐃𝐻

𝑙 𝐱𝑙
= 𝜎−2𝑛 Ξ0𝐃𝐻

𝑙
(

𝐈𝑀𝑁 + 𝜎−2𝑛 𝐃𝑙Ξ0𝐃𝐻
𝑙
)−1𝐱𝑙

= Ξ0𝐃𝐻
𝑙
(

𝐃𝑙Ξ0𝐃𝐻
𝑙 + 𝜎2𝑛𝐈𝑀𝑁

)−1𝐱𝑙

(A.12)

Applying the matrix inversion lemma, Ξ𝑙 yields

Ξ𝑙 =
(

𝜎−2𝑛 𝐃𝐻
𝑙 𝐃𝑙 +Ξ−1

0
)−1

= Ξ0 −Ξ0𝐃𝐻
𝑙 (𝐃𝑙Ξ0𝐃𝐻

𝑙 + 𝜎2𝑛𝐈𝑀𝑁 )−1𝐃𝑙Ξ0

(A.13)
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