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a b s t r a c t 

An innovative algorithm to synthesize a non-uniform sparse planar array with as few elements as possible 

is proposed in this paper. The algorithm is aimed at multiple different beampatterns, and can directly 

estimate the exact positions of the planar array elements, avoiding the problem of coordinate pairing 

between X-axis and Y-axis. To achieve this, the proposed method utilizes the rotational invariance caused 

by the translation invariant structure of the steering vector. It derives the array element position from 

the data matrix based on unitary ESPRIT and employs a low-rank approximation operation to construct a 

matrix containing the position information of the reconstructed sparse array elements. Automatic pairing 

is then realized by assigning the real and imaginary parts of the matrix eigenvalues to the abscissa and 

ordinate of elements one-to-one. The paper presents two different simulation scenarios to demonstrate 

the performance of the proposed algorithm, with the results showing a reduction in the number of array 

elements by 20%-30% while ensuring low reconstruction error, low time, and space complexity. Overall, 

the proposed algorithm provides an effective solution for synthesizing non-uniform sparse planar arrays 

with fewer elements, which can significantly reduce costs and complexity in various applications. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Synthesizing the desired beampattern with fewer array ele- 

ents is a subject of ongoing research, as highlighted in recent 

tudies [1–3] . Sparse arrays offer several advantages over tradi- 

ional full arrays. For instance, for a given number of elements, a 

parse array has a larger array aperture, which enhances the accu- 

acy and resolution of the direction of arrival algorithm [4,5] . Ad- 

itionally, a sparse array requires fewer elements to achieve the 

ame array aperture, leading to smaller-scale receiving and signal 

rocessing systems. Hence, the cost can be greatly reduced by ap- 

lying sparse array [6] . Sparse arrays also reduce mutual coupling 

7] between array elements, thereby weakening its impact on the 

erformance. Given these benefits, exploring the applications and 

esigns of sparse arrays is crucial [8] . 

Generally speaking, deleting or closing some elements from an 

qually spaced array is a typical way of forming a sparse array, 

here the spacing between two arbitrary elements is an integral 

ultiple of a fixed space. Stochastic optimization algorithm such as 

enetic algorithm (GA) [9] , simulated annealing (SA) [10] , particle 
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warm optimization (PSO) [11–13] and differential evolution algo- 

ithm (DE) [14–16] are commonly used for this purpose. However, 

hese algorithms have high computational complexity, especially 

or large arrays, and may get stuck in local optima. In [17,18] , Keizer

roposed an iterative fast Fourier transform algorithm, which re- 

oves some radiating elements to obtain a new sparse array by 

sing inverse discrete Fourier transform relationship between the 

rray factor and the element excitations. This method significantly 

educes computational complexity, but its effectiveness depends 

eavily on the choice of the starting point. With the development 

f convex optimization, it has been utilized to synthesize sparse 

rrays; see the work in [19,20] . Notably, a convex optimization al- 

orithm proposed in [21] for the synthesis of sparse arrays radiat- 

ng focused or shaped beampattern cannot guarantee optimality of 

he final result. 

In the above methods, the candidate antennas are all restricted 

o the grid, thus limiting the degree of freedom for the arrange- 

ent of array elements. Conversely, a flexible sparse linear ar- 

ay reconstruction technique based on the matrix pencil method 

MPM) was proposed in [22,23] , reconstructed array antennas are 

ot limited to grids. On this basis, Liu et al. proposed the forward- 

ackward matrix pencil method (FBMPM) by improving the MPM 

n [24] and extended MPM and FBMPM to multiple-pattern sce- 

ario in [25] . MPM performs sparse array synthesis by constructing 

ankel matrices and utilizing low-rank approximation. Although 
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resenting high performance, the application of MPM is limited to 

inear arrays. Based on the matrix enhancement and matrix pen- 

il (MEMP) in [26] , Gu et al. introduced a method to synthesize 

parse planar arrays in [27] . Extending to multiple patterns, the 

eneralized matrix enhancement and matrix pencil (GMEPM) was 

resented in [28] . However, according to the principle of MPM, its 

omputational complexity significantly increases as the number of 

atterns increases. In addition, there is another type of method 

or synthesizing sparse arrays based on the Bayesian compression 

ensing (BCS) technique, as proposed in [29–33] , and the candi- 

ate antennas may not limited to grids. BCS obtains both the op- 

imal positions and excitations of a new sparse array through a 

elevance vector machine. It should be noted that an additional co- 

rdinate pairing step is required for the above-mentioned methods 

hen synthesizing a planar array. Also, the coordinate pairing op- 

ration increases the computational complexity and may lead to 

erformance degradation due to some potential pairing errors. 

In this paper, we propose a method for synthesis of multiple- 

attern sparse planar arrays with automatic coordinate pairing. 

ifferent from MPM methods that rely on constructing Hankel ma- 

rices, the proposed method arranges the sampled data of desired 

adiation pattern in a regular way. In this method, a special uni- 

ary transformation is firstly performed on the uniformly sampled 

teering vectors to obtain a real-valued vector, and then a uni- 

ormly sampled data matrix is obtained. Next, based on unitary ES- 

RIT [34] , we exploit the rotation invariance property arising from 

he translation invariance structure of the steering vector to de- 

ive the array element positions from the data matrix. In order to 

educe the number of array elements, a matrix containing posi- 

ion information of the reconstructed sparse array elements is con- 

tructed by low-rank approximation. And real and imaginary parts 

f the eigenvalues of the matrix are in one-to-one correspondence 

ith the abscissa and ordinate of elements positions. This way, we 

an synthesize sparse planar arrays without coordinate pairing be- 

ween X-axis and Y-axis. The algorithm can directly estimate exact 

ositions of array elements, avoiding the coordinate pairing prob- 

em. In addition, the obtained new array can synthesize multiple 

ifferent beampatterns that fit the requirements, not limited to a 

ingle pattern. Moreover, the proposed method has low computa- 

ional and space complexity. Representative simulations are con- 

ucted in different scenarios to validate the feasibility and effec- 

iveness of the algorithm. 

The rest of this paper is organized as follows. The problem for- 

ulation and unitary transformation are presented in Section 2 . 

he proposed method is analyzed in Section 3 . In Section 4 , nu-

erical results are provided to verify the performance of the pro- 

osed method. Finally, conclusions are drawn in Section 5 . 

. Preliminaries 

.1. Problem formulation 

We consider a uniform rectangular array (URA) with G = G r ×
 c antennas distributed in the x − y plane. For simplicity, we as- 

ume that all antennas are isotropic. Considering P desired pat- 

erns, we can express the pth beampattern as follows: 

 

(p) (u, v ) = 

G ∑ 

g=1 

R 

(p) 
g e jβ(x g u + y g v ) , p = 1 , 2 , · · · , P (1) 

here R 
(p) 
g represents the complex excitation coefficient for the 

pth pattern of the gth element with coordinate (x g , y g ) , x g and

 g stand for the abscissa and ordinate of the gth element, respec- 

ively, g = 1 , 2 , . . . , G . β = 2 π/λ, λ is the wavelength. j = 

√ −1 is

he imaginary unit, and u = sin θcos ϕ, v = sin θsin ϕ, where θ is the 

ngle with the z axis, and ϕ is azimuth. The desired patterns can 
2 
e obtained through optimization algorithms such as GA, DE, etc. 

he purpose of sparse array synthesis is to construct a new array 

ith minimum number of antennas. And the sparse array can keep 

he synthesized patterns and the specified desired patterns F (u, v ) 
ithin an acceptable tolerance ε. The problem can be described as 

2) , shown at the top of the next page, 

 

 

 

 

 

 

 

min 

R ′ m ,x ′ m ,y ′ m 
M 

s.t. 

P ∑ 

p=1 

∫ 1 

−1 

∫ 1 

−1 

∣∣∣F (p) (u, v ) −
M ∑ 

m =1 

R (p) 
m 

′ 
exp [ jk (x ′ m 

u + y ′ m 

v )] 

∣∣∣2 

d ud v ≤ ε

(2) 

here M is the total number of reconstructed array antennas, 

nd R 
(p) 
m 

′ 
denotes the new complex excitation coefficient for the 

pth pattern of the m th new array element at the coordinate of 

x ′ m 

, y ′ m 

) , m = 1 , 2 , . . . , M. 

.2. Unitary transformation 

Given a vector b ∈ C L , then b is conjugate centrosymmetry if it 

atisfies: 

L b = b 

∗ (3) 

here 

L = 

⎡ ⎢ ⎢ ⎣ 

0 · · · 0 1 

0 · · · 1 0 

. . . 
. . . 

. . . 
. . . 

1 · · · 0 0 

⎤ ⎥ ⎥ ⎦ 

∈ R 

L ×L (4) 

ince the inner product of any two conjugate centrosymmetric vec- 

ors is real-valued, it is not difficult to find that any conjugate cen- 

rosymmetric vector multiply by a matrix from the left side re- 

urns a real-valued vector, provided that the matrix has conjugate 

entrosymmetric row vectors. One simple candidate for the above 

atrices is: 

 L = 

1 √ 

2 

[
I K jI K 
�K − j�K 

]
, L = 2 K (5) 

 L = 

1 √ 

2 

[ 

I K 0 K jI K 
0 

T 
K 

√ 

2 0 

T 
K 

�K 0 K − j�K 

] 

, L = 2 K + 1 (6) 

here I K represents the K × K identity matrix, and 0 K is a K- 

imensional zero vector. Note that Q L is an L × L unitary matrix. 

. Reconstructed planar array algorithm with automatic 

oordinate pairing 

.1. Array model 

We consider the array as described in Section 2.1 . One can see 

hat both u and v are defined in the domain [ −1 , 1] . Sampling u

nd v uniformly, we obtain: 

 n 1 = n 1 � = 

n 1 

N 

, n 1 = −N, · · · , 0 , · · · , N (7) 

 n 2 = n 2 � = 

n 2 

N 

, n 2 = −N, · · · , 0 , · · · , N (8) 

here the number of samples on both u and v is L = (2 N + 1) ,

he total number of sampling points is L 2 = (2 N + 1) 2 and � =
1 
N is the sampling interval. Due to the Nyquist sampling theo- 

em, the condition that � ≤ λ/ min { 2 x max , 2 y max } must be satisfied,
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here x max = max { x 1 , . . . , x G } , y max = max { y 1 , . . . , y G } . For exam-

le, for an array having G = G r × G c elements with a uniform spac-

ng of λ/ 2 , the sampling interval � should satisfy � ≤ min { 1 / (G r −
) , 1 / (G c − 1) } , which indicates that N ≥ max { G r − 1 , G c − 1 } . 

Before proceeding, for the gth element we define: 

 (x g ) = [ e − jβx g (−N)�, e − jβx g (−N+1)�, · · · , e − jβx g N�] T (9) 

 (y g ) = [ e − jβy g (−N)�, e − jβy g (−N+1)�, · · · , e − jβy g N�] T (10) 

 g = b (x g ) b 

T (y g ) ∈ C 

L ×L (11) 

nd the matrix Z = [ vec (A 1 ) , vec (A 2 ) , . . . , vec (A G )] is constructed,

here vec (·) is the vectorization operation. It is worth noting that 

ach row of the matrix Z is the steering vector of the array, which

an be expressed as 

 = 

⎡ ⎢ ⎢ ⎣ 

a T 1 

a T 2 
. . . 

a T 
L 2 

⎤ ⎥ ⎥ ⎦ 

(12) 

here 

 i = [ e − jβ(x 1 u i + y 1 v i ) , e − jβ(x 2 u i + y 2 v i ) , · · · , e − jβ(x G u i + y G v i ) ] T (13) 

s the steering vector corresponding to the i th sampling point, and 

 = 1 , 2 , · · · , L 2 . 

Since L = (2 N + 1) is odd, the form in (6) is used and 

 (x g ) = Q 

H 
L b (x g ) 

= 

√ 

2 × [ cos (Nx g ) , . . . , cos (x g ) , 1 / 
√ 

2 , 

− sin (x g ) , . . . , −sin (Nx g )] T (14) 

imilarly, we can get the real-valued vector d (y g ) = Q 

H 
L b (y g ) . And

 matrix about the gth element can be represented as follows: 

 g = Q 

H 
L A g Q 

∗
L 

= Q 

H 
L b (x g ) b 

T (y g ) Q 

∗
L 

= d (x g ) d 

T (y g ) (15) 

nd a real-valued matrix is defined as D = [ D 1 , D 2 , . . . , D G ] . 

.2. Rearranging elements with automatic coordinate pairing 

We know that the desired beampatterns can be obtained by 

djusting the weight vector w . For a given weight vector w p , the

eampattern may be expressed as 

 p = Zw p (16) 

hrough different weight vectors, the beampatterns pointing in dif- 

erent directions are 

 = ZW (17) 

here W = [ w 1 , w 2 , . . . , w P ] and Y = [ y 1 , y 2 , . . . , y P ] . And y p is ob-

ained by the pth weight vector w p , as expressed in (16) . 

Next, the method for estimating the positions of new sparse ar- 

ay elements is introduced. Based on unitary ESPRIT in [34] , a real- 

alued L 2 × 2 P matrix is defined as 

 

 = [ Re { ̄Y } , Im { ̄Y } ] (18) 

here Ȳ = (Q 

H 
L 

� Q 

H 
L 
) Y and � denotes the Kronecker matrix prod- 

ct. Splitting the real and imaginary parts of Ȳ to constitute ̃  Y can 

ncrease the length of valid data, thereby improving the estimation 

ccuracy about the new array elements positions of the proposed 

lgorithm. Moreover, the real-value matrix ̃  Y that needs to be pro- 

essed finally reduces the computational complexity of subsequent 

rocedure, such as SVD operations, etc. 
3 
Next, the SVD of the matrix ̃  Y is carried out as 

 

 = ̃

 U ̃

 �˜ V 

H (19) 

here ˜ U ∈ R 

L 2 ×L 2 and ̃

 V ∈ R 

2 P×2 P are unitary matrices, and 

˜ = 

[˜ �1 

0 

]
∈ R 

L 2 ×2 P (20) 

here ˜ �1 = diag ( ̃  σ1 , ̃  σ2 , · · · , ̃  σ˜ S ) , and σ˜ s is the ordered ̃

 s th singular

alue of ̃  Y , and ̃

 S = min { 2 P, L 2 } . In order to contain the information

f the initial beampatterns completely, we set L 2 > 2 P here, so we

ave ̃  S = 2 P . 

The vector b (x g ) in (9) satisfies the invariance relation 

 

jx g J 1 b (x g ) = J 2 b (x g ) (21) 

here J 1 and J 2 are the (L − 1) × L selection matrices 

 1 = 

[
I L −1 0 

]
∈ R 

(L −1) ×L (22) 

 2 = 

[
0 I L −1 

]
∈ R 

(L −1) ×L (23) 

here I L −1 is an identity matrix of size (L − 1) × (L − 1) . And mul-

iplying an L -dimension vector with the J 1 and J 2 selects the first 

nd last L − 1 components of the vector, respectively. Since Q L is 

nitary, it follows: 

 

jx g J 1 Q L Q 

H 
L b (x g ) = J 2 Q L Q 

H 
L b (x g ) (24) 

ccording (14) , we establish an invariance relationship of d (x g ) 

 

jx g J 1 Q L d (x g ) = J 2 Q L d (x g ) (25) 

ultiplying Q 

H 
L −1 

, an equation can be acquired: 

 

jx g Q 

H 
L −1 J 1 Q L d (x g ) = Q 

H 
L −1 J 2 Q L d (x g ) (26) 

ote that J 1 and J 2 satisfy �L −1 J 2 �L = J 1 . As a consequence, 

 

H 
L −1 J 2 Q L = Q 

H 
L −1 �L −1 �L −1 J 2 �L �L Q L 

= Q 

T 
L −1 J 1 Q 

∗
L 

= (Q 

H 
L −1 J 1 Q L ) 

∗ (27) 

here we have exploited the fact that �L Q L = Q 

∗
L 

and �L �L = I L 
or any L . Then, substituting (27) into (26) , we get 

 

jx g (Q 

H 
L −1 J 2 Q L ) 

∗d (x g ) = Q 

H 
L −1 J 2 Q L d (x g ) (28) 

et K 1 and K 2 be the real and imaginary parts of Q 

H 
L −1 J 2 Q L , as fol-

ows: 

 1 = Re { Q 

H 
L −1 J 2 Q L } (29) 

 2 = Im { Q 

H 
L −1 J 2 Q L } (30) 

 1 and K 2 are real-valued (L − 1) × L matrices. With these defini- 

ions, Eq. (26) can be expressed as 

 

j 
x g 
2 (K 1 − jK 2 ) d (x g ) = e − j 

x g 
2 (K 1 + jK 2 ) d (x g ) (31) 

earranging, the above equation becomes 

e j 
x g 
2 − e − j 

x g 
2 ) K 1 d (x g ) = j(e j 

x g 
2 + e − j 

x g 
2 ) K 2 d (x g ) (32) 

sing Eulers formula, an invariance relationship is obtained as 

an 

(
x g 

2 

)
K 1 d (x g ) = K 2 d (x g ) (33) 

imply extended to the URA, the invariance relationship can be ex- 

ressed as 

an 

(
x g 

2 

)
K 1 D g = K 2 D g (34) 
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Fig. 1. Comparison of initial and reconstructed patterns at u = -0.4, v = -0.3. (a) Top view of initial patterns. (b) Top view of reconstructed patterns. (c) Slice diagram at u = -0.4. 

(d) Slice diagram at v = -0.3. 
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sing the vectorization operation vec (·) , we find that the L 2 - 

imension real-valued vector vec (D g ) satisfies 

an 

(
x g 

2 

)
K x 1 vec (D g ) = K x 2 vec (D g ) (35) 

here K x 1 = I L � K 1 and K x 2 = I L � K 2 are the (L − 1) L × L 2 matri-

es, and the following equation has been exploited from (34) to 

35) : 

ec (BCH ) = (H 

T 
� B ) vec (C ) (36) 

here B , C , H are any matrices with appropriate dimensions. Sim- 

larly, the real-valued vector d (y g ) satisfies 

an 

(
y g 

2 

)
K 3 d (y g ) = K 4 d (y g ) (37) 

here K 3 and K 4 are defined by (29) and (30) , i.e. K 3 and K 4 are

he same as K 1 and K 2 due to the same sampling of u and v . It

ollows that 

an 

(
y g 

2 

)
D g K 

T 
3 = D g K 

T 
4 (38) 

imilarly, we find that d g satisfies 

an 

(
y g 

2 

)
K y 1 vec (D g ) = K y 2 vec (D g ) (39) 

here K y 1 = K 3 � I L and K y 2 = K 4 � I L are the L (L − 1) × L 2 matri-

es. 
4 
Without loss of generality, we first assume that the new sparse 

rray has M elements. For M < G elements, we define the L 2 ×
real-valued matrix as D̆ = [ vec (D 1 ) , vec (D 2 ) , . . . , vec (D M 

)] . The

eal-valued manifold relation in (33) translates into the real-valued 

atrix relation 

 x 1 ̆D �x = K x 2 ̆D (40) 

here �x = diag { tan ( 
x 1 
2 ) , . . . , tan ( 

x M 
2 ) } . The Eq. (39) dictates that

˘
 satisfies 

 y 1 ̆D �y = K y 2 ̆D (41) 

here �y = diag { tan ( 
y 1 
2 ) , . . . , tan ( 

y M 
2 ) } . Then we choose the M

argest left singular vectors of ˜ Y to form a L 2 × M matrix Ĕ . Ap- 

roximately, we have 

˘
 = D̆ T (42) 

here T is an unknown M × M real-valued matrix. It is not difficult 

o see that substituting D̆ = Ĕ T −1 into (40) can get 

 x 1 ̆E �x = K x 2 ̆E (43) 

here �x = T −1 �x T . And substituting D̆ into (41) yields the signal 

igenvector relations 

 y 1 ̆E �y = K y 2 ̆E (44) 

here �y = T −1 �y T . Thus, the eigenvalues of the M × M matrix 

x and �y correspond to solutions of the matrix equations in 
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40) and (41) , which are tan ( x m 2 ) and tan ( y m 2 ) , m = 1 , . . . , M, re-

pectively. Since all of the quantities in (43) and (44) are real val- 

ed, � = �x + j�y can be decomposed as 

= �x + j�y = T 

−1 (�x + j�y ) T (45) 

he eigenvalues λm 

of � corresponds to tan ( x m 2 ) + j tan ( y m 2 ) , m =
 , . . . , M. Since the above processes provide closed-form, automatic 

airing of final calculated x m 

and y m 

, m = 1 , . . . , M is facilitated. 

ence, the positions of the new array elements can be accurately 

btained, neither searching nor pairing is required. 

After obtaining the new array, we can refer to Z to construct 

 new matrix Z new 

. Next, the least square method is utilized to 

btain the new excitation coefficient matrix W new 

, as follows: 

 new 

= (Z 

T 
new 

Z new 

) −1 Z 

T 
new 

Y (46) 

ccording to Eq. (17) , the desired multiple beampatterns are avail- 

ble. 

.3. Reducing the number of elements 

In this subsection, we discuss how to determine the number of 

lements in the sparse new array. Usually, for an array of G ele- 

ents, the SVD operation is performed on the data matrix Y in 

17) , and we will obtain G non-zero singular values. However, ob- 

ervations have shown that for many designed antenna arrays in 

iterature, the number of main singular values is less than that of 

ntenna elements. This means that the contributions of some el- 

ments corresponding to non-primary singular values can be re- 

laced by combinations of other elements. Therefore, we can dis- 

ard the non-primary values to get a low-rank approximation ma- 

rix of Y , which corresponds to a new antenna array with fewer 

lements. Hence, we perform SVD on matrix Y as follows: 

 = U�V 

H (47) 

here U ∈ C 

L 2 ×L 2 and V ∈ C 

P×P are unitary matrices. And 

= 

[
�1 

0 

]
∈ C 

L 2 ×P (48) 

here �1 = diag (σ1 , σ2 , · · · , σS ) , and σs is the ordered s th singu-

ar values of Y , and S = min { P, L 2 } . Generally speaking, in order to

ontain the information of the initial beampatterns completely, the 

ampling points are not be too few, so we might as well set L 2 > P 

ere. Thus, we have S = P . 

A typical low-rank approximation method is to set these non- 

rimary singular values equal to zero, as follows: 

˘
 = U ̆�V 

H (49) 

here 

˘ = 

[
�̆1 0 

0 0 

]
∈ C 

L 2 ×P (50) 

here �̆1 = diag (σ1 , σ2 , · · · , σM 

) . It has been proved that in all

atrices of rank M, Y̆ has the smallest approximation error in the 

robenius norm, that is, mathematically 

 Y − Y̆ ‖ F = min 

rank (X ) = M 

‖ Y − X ‖ F = 

√ 

S ∑ 

s = M+1 

σ 2 
s (51) 

rom (51) , we can know that the approximation error decreases 

onotonically as the number of new antenna elements M in- 

reases. When M = G , the approximation error approaches zero. 

his means that the radiation pattern of the new array can always 

chieve a good approximation. 
5

In the practical problem, we use the following method to deter- 

ine a suitable value of M: 

 = min { M min ; | 
√ ∑ S 

s = M min +1 σ
2 
s √ ∑ M min 

s =1 
σ 2 

s 

< ε} (52) 

here ε is a small positive number. The determination of M is 

ased on the error of reconstructed beampatterns approximating 

riginal radiation beampatterns. Then, the value of M obtained by 

q. (52) is substituted into the column number M of the D̆ matrix 

n (40) . And the reconstructed planar array algorithm with auto- 

atic coordinate pairing is summarized in Algorithm 1 . 

lgorithm 1 The proposed Algorithm. 

1: Input : the matrix Z in (12) and W , where Z is the transpose

of array manifold of the initial array, and W = [ w 1 , . . . , w P ] is

composed of weight vectors of the P desired beampatterns 

2: calculate the sampling matrix of desired beampatterns Y by 

(17) 

3: compute SVD of Y by (47) 

4: determine the number of new array elements M in (52) by 

making a low-rank approximation to Y 

5: obtain 

˜ Y in (18) by Y and unitarymatrix Q L defined in (5) and 

(6) 

6: compute SVD of ̃  Y by (19) 

7: obtain Ĕ composed of the M “largest ′′ left singular vectors of ̃Y 

8: compute K x 1 = I L � K 1 , K x 2 = I L � K 2 , K y 1 = K 3 � I L and K y 2 =
K 4 � I L , where K 1 and K 3 are defined the same in (29), K 2 and

K 4 are defined the same in (30) and I L is the identity matrix 

9: calculate �x and �y by (43) and (44) 

0: calculate the eigenvalues λm 

, m = 1 , . . . , M of the matrix �x +
j�y 

11: compute the abscissa and ordinate of the automatic pair- 

ing of the new array elements, x m 

= 2 tan 

−1 ( Re (λm 

)) , y m 

=
2 tan 

−1 ( Im (λm 

)) , m = 1 , . . . , M 

2: calculate the new array manifold Z new 

of the new array 

3: obtain the new weight matrix W new 

of the new arraywith re- 

spect to P desired beampatterns from (46) 

4: Output : the coordinates (x m 

, y m 

) , m = 1 , . . . , M of the new ar-

ray elements, the new weight matrix W new 

and the recon- 

structed beampatterns 

emark 1. We assumed the rank of ̃  Y is equal to G and the ranks 

f �x and �y are equal to M in Section 3 . To ensure that these 

ssumptions hold, the following conditions need to be met 

 

2 ≥ 2 P = ̃

 S > P = S ≥ G ≥ M (53) 

here L = 2 N + 1 . 

.4. Analysis 

In this part, we analyze the time complexity and space com- 

lexity of the proposed algorithm. 

.4.1. Time complexity 

The SVD and matrix inversion processes occupy most of the 

omputing resources in the implementation of the proposed 

ethod. From the Section 3 and (53) , it can be known that the SVD

f ̃  Y and Y is the most computationally complex, so the computa- 

ional complexity of the proposed method is O (P L 4 ) . Likewise, the 

VD process of GMEPM also occupies most of the computing re- 

ources. And the dimension of the decomposed matrix is G 

2 × P G 

2 , 

o the computational complexity is O (P G 

6 ) , even after using ran-

omized SVD, the computational complexity is O (P G 

4 log ( 
√ 

G )) . L 
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Fig. 2. Comparison of initial and reconstructed patterns at u = 0, v = 0.3. (a) Top view of initial patterns. (b) Top view of reconstructed patterns. (c) Slice diagram at u = 0. (d) 

Slice diagram at v = 0.3. 

Fig. 3. Comparison of 3-D view of initial and reconstructed patterns at u = 0.5, v = 0.2. (a) 3-D view of initial pattern. (b) 3-D view of reconstructed pattern synthesized by 

the proposed method. (c) 3-D view of reconstructed pattern synthesized by the method in [28] . (d) 3-D view of reconstructed pattern synthesized by the method in [17] . (e) 

3-D view of reconstructed pattern synthesized by the method in [20] . (f) 3-D view of reconstructed pattern synthesized by the proposed method considering the coupling. 

6 
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Fig. 4. Comparison of top view of initial and reconstructed patterns at u = 0.5, v = 0.2. (a) Top view of initial pattern. (b) Top view of reconstructed pattern synthesized by 

the proposed method. (c) Top view of reconstructed pattern synthesized by the method in [28] . (d) Top view of reconstructed pattern synthesized by the method in [17] . (e) 

Top view of reconstructed pattern synthesized by the method in [20] . (f) Top view of reconstructed pattern synthesized by the proposed method considering the coupling. 

Fig. 5. Comparison of slice diagram of initial and reconstructed patterns at u = 0.5, v = 0.2. (a) Slice diagram at u = 0.5. (b) Slice diagram at v = 0.2. 
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nd G are of the same magnitude. Consequently, the computational 

omplexity is lower than the method in [28] . 

.4.2. Space complexity 

It is not difficult to see that the space occupied by matrix Ỹ 

s the largest in the proposed algorithm, so the space complexity 

f the proposed method is O (P L 2 ) . Similarly, in GMEPM of [28] , a

omposite Hankel block matrix of size G 

2 × P G 

2 occupies largest 

pace, so the space complexity of the proposed method is O (P G 

4 ) .

ence, the space complexity of the proposed method also has an 

dvantage over that of GMEPM. 

Especially when the array is large, the advantage of the pro- 

osed method in complexity will be more obvious, since the com- 

lexity of [28] will increase rapidly with the increase of the num- 

er of array elements. 
7

. Numerical results 

To more clearly evaluate the performance of the proposed algo- 

ithm, we set two parameters. They are the reduction rate α of the 

umber of array elements and the average error ε of the recon- 

truction pattern, respectively. And the expressions are as follows: 

= 

G − M 

G 

× 100% (54) 

= 

∑ N 
n 1 = −N 

∑ N 
n 2 = −N 

∣∣̂ F dB (u n 1 , v n 2 ) − F dB (u n 1 , v n 2 ) 
∣∣

(2 N + 1) 2 
(55) 

here ̂  F dB (u n 1 , v n 2 ) and F dB (u n 1 , v n 2 ) represent the array gain (dB)

t (u n , v n ) of the beampattern synthesized by the new array and 
1 2 
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Table 1 

Performance comparison of the proposed method and other methods with the focused beampatterns . 

Parameters Methods 

proposed method [28] [17] [20] 

Initial 3dB beamwidth(u) 0.23 0.23 0.23 —

Reconstructed 3dB beamwidth(u) 0.23 0.27 0.25 0.23 

Initial 3dB beamwidth(v) 0.23 0.23 0.23 —

Reconstructed 3dB beamwidth(v) 0.23 0.27 0.23 0.25 

Target SLL -20dB -20dB -20dB -20dB 

Reconstructed average SLL -23.28-dB -21.79-dB -18.59dB -21.03dB 

Error ε 1.71dB 9.67dB 13.26dB —

Directivity (dBi) 22.11 20.58 21.93 20.72 

Number of reconstructed array elements 71 76 71 60 

Reduction ratio α 29% 24% 29% —

runtime 3.86s 511.08s 0.26s 37min 

Number of tested beampatterns 100 5 1 —

Fig. 6. Comparison of the positions of the new and initial elements for the focused 

patterns. 
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he initial array. Moreover, the directivity and mutual coupling of 

he planar array are also discussed. When the main beam of the 

lanar array is steered to the direction of ( θ , ϕ ), the correspond-
0 0 

Fig. 7. Comparison of initial and reconstructed pattern

8 
ng directivity can be written as a matrix form, given by 

 (θ0 , ϕ 0 ) = 

w 

H 
0 a 0 a 

H 
0 w 0 

w 

H 
0 

Bw 0 

(56) 

here w 0 and a 0 are the weight vector and steering vector corre- 

ponding to direction ( θ0 , ϕ 0 ),respectively. And B is a positive def- 

nite Hermite matrix determined by the array structure, which can 

e calculated by 

 i, j = 

sin (βρi j ) 

2 βρi j 

(57) 

here 

i j = 

√ 

(x i − x j ) 2 + (y i − y j ) 2 (58) 

he specific expressions of the directivity can be obtained in [36] . 

nd we use the nearest neighbor coupling coefficient to discuss 

he mutual coupling between radiators: 

 (i, j) = 

{
cos (β�d (i, j) ) , �d (i, j) ≤ λ/ 2 

0 , otherwise 
(59) 

here �d (i, j) is the distance between i th and jth array element. 

In this subsection, we present two simulation scenarios to eval- 

ate the proposed algorithm. In the first scenario, all beampatterns 

re focused beampatterns with narrow mainlobe width and point- 

ng at a certain angle. In the second scenario, half of the desired 

eampatterns are focused beampatterns, while the other half are 

at-top beampatterns with a wide beamwidth. For both scenarios, 

he sidelobe levels (SLL) of all desired patterns are constrained to 

 specific level. To provide a more comprehensive evaluation of the 
s. (a) Slice diagram at u. (b) Slice diagram at v. 
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Fig. 8. QR codes for the Taylor pattern. (a) the locations of x. (b) the locations of y. (c) excitations of Fig. 1 . (d) excitations of Fig. 2 . (e) excitations of Fig. 3 . 

Fig. 9. Comparison of initial and reconstructed patterns at u = -0.2, v = 0.1. (a) Initial patterns. (b) Reconstructed patterns. (c) Slice diagram at u = -0.2. (d) Slice diagram at 

v = 0.1. 
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Fig. 10. Comparison of initial and reconstructed patterns at u = 0.2, v = -0.1. (a) Initial patterns. (b) Reconstructed patterns. (c) Slice diagram at u = 0.2. (d) Slice diagram at 

v = -0.1. 
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roposed method, we compare it with three representative meth- 

ds from the literature, namely the iterative FFT algorithm pre- 

ented in [17] , GMEPM presented in [28] and IDEA presented in 

20] . 

.1. Focused beampatterns 

In this subsection, we consider an 10 × 10 URA, that is Gr = 

0 , Gc = 10 , with 	 x = 	 y = λ/ 2 . We selected P = 100 beampat-

erns synthesized by Taylor window, whose mainlobe directions 

hange uniformly in [ u, v | u ∈ [ −0 . 4 , 0 . 5] , v ∈ [ −0 . 4 , 0 . 5]] , and the

idelobe levels are all constrained to below -20 dB. 

To demonstrate the performance of the proposed algorithm 

ore comprehensively and thoroughly, we choose three beam- 

atterns for comparison with three representative methods in 

17,28] and in [20] , which are far apart in the mainlobe direc- 

ions. The three beam axes (u, v ) are (−0 . 4 , −0 . 3) , (0 , 0 . 3) and

0 . 5 , 0 . 2) , as shown in Figs. 1 - 5 . It should be emphasized that

he proposed method is aimed at the synthesis of sparse pla- 

ar arrays with multiple patterns, particularly when the number 

f beampatterns is large. However, there is no existing method 

ith exactly the same function as this proposed method, so 

hree algorithms with similar functions are selected. Although 

28] also targets multi-beampattern, it requires too high time 

nd space complexity to carry 100 beampatterns. Therefore, we 

ested it on only five beampatterns with mainlobe directions (u, v ) 
f (−0 . 4 , −0 . 4) , (−0 . 4 , −0 . 3) , (0 , 0 . 3) , (0 . 5 , 0 . 2) and (0 . 5 , 0 . 5) . And

EDA is optimized according to the maximum scanning range of 
10 
he beam, so here we set the maximum scanning range u max as 

.5. On the other hand, since [17] can only operate on a single 

eampattern, only the result related to Fig. 3 is illustrated. 

Figs. 1 (a) and 1 (b) show the initial and reconstructed two- 

imensional top view of the corresponding beampattern, respec- 

ively. It can be observed that the reconstructed array can synthe- 

ize the desired pattern, albeit with increased SLL. This is due to 

he synthesis of desired patterns that simultaneously satisfy a wide 

ange of different mainlobe directions. A slice comparison of the 

nitial and reconstructed patterns in the direction of the mainlobe 

s shown in Fig. 1 (c) and Fig. 1 (d). The mainlobe before and after

econstruction by the proposed method are almost identical, with 

nly minor differences in the sidelobes that do not significantly 

mpact the mainlobe. Conversely, by GMEPM and IDEA, the error 

etween the reconstructed beampattern and the initial beampat- 

ern is significant, especially in the mainlobe, which is noticeably 

idened. Fig. 2 compares the initial and reconstructed pattern of 

he mainlobe at (0 , 0 . 3) . As shown in Fig. 2 , the proposed algo-

ithm can still synthesize the desired beampattern more accurately 

han the algorithm in [28] and [20] . 

In Fig. 3 - Fig. 5 , the simulation results of the algorithm in

17] are added and compared with GMEPM, IDEA and the proposed 

lgorithm. To better demonstrate the performance of the four algo- 

ithms, we show the three-dimensional views of the initial beam- 

attern and the beampattern synthesized by the four methods 

re respectively shown in Fig. 3 (a)- Fig. 3 (d). It is evident that the

eampatterns synthesized by the four methods roughly fit the de- 

ired beampattern. However, beampatterns synthesized by the al- 
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Fig. 11. Comparison of initial and reconstructed patterns at u = -0.2, v = 0.2. (a) Initial patterns. (b) Reconstructed patterns. (c) Slice diagram at u = -0.2. (d) Slice diagram at 

v = 0.2. 
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8  

a

orithm in [17,28] and [20] have more sidelobes with higher levels 

han the beampattern synthesized by the proposed algorithm. The 

op views of 3 (a)- Fig. 3 (d) are shown in 4 (a)- Fig. 4 (d). As we can

ee, the proposed algorithm has the best performance. The slice 

iagrams shown in 5 (a) and Fig. 5 (b) reveal that the mainlobes 

f beampatterns reconstructed by the proposed method and the 

ethod in [17] match the desired beampattern better than that of 

he method in [28] and [20] . However, the algorithm in [17] does 

ot perform well on sidelobes. Moreover, the 3D view, top view 

nd slice diagrams of the beampattern synthesized by the pro- 

osed method with mutual coupling are shown in Fig. 3 (f), 4 (f), 

 (a) and 5 (b). 

Fig. 6 illustrates the positions of initial and reconstructed 

rray elements. We observe that the aperture of the array re- 

onstructed by the proposed method is slightly smaller than 

he original array. And it can be seen from the Fig. 6 that the

rray elements of the array reconstructed by the algorithm in 

28] are unevenly distributed, resulting in a significant difference 

etween the final beampatterns and the original ones. However, 

he array positions obtained by the algorithm in [17] are obvi- 

usly still limited to the original array element positions, thus 

indering the reconstruction of sidelobes. And the aperture of 

he array reconstructed by IDEA in [20] is bigger than the initial 

rray. To further demonstrate the effectiveness of the proposed 

lgorithm, we present additional comparisons of beampatterns in 

ig. 7 (a) and Fig. 7 (b), pointing to angles such as (−0 . 4 , −0 . 4) ,

−0 . 3 , −0 . 3) , (−0 . 2 , −0 . 2) , (−0 . 1 , −0 . 1) , (0 , 0) , (0 . 1 , 0 . 1) , (0 . 2 , 0 . 2) ,

0 . 3 , 0 . 3) , (0 . 4 , 0 . 4) and (0 . 5 , 0 . 5) . 
11
Table 1 provides detailed data, showing that the proposed 

ethod reduces the number of array elements from 100 to 71, 

chieving a reduction ratio of 29%. The average sidelobe level 

f the reconstructed beampattern of the proposed method, the 

ethod in [17,28] and [20] are -23.28dB, -21.79dB, -18.59dB and 

21.03dB, respectively. The average SLL of the reconstructed beam- 

attern of the proposed method is the best in the four meth- 

ds. And the average error of the proposed method is also the 

mallest, only 1.71 dB, while the other two methods have errors 

f 9.67 dB and 0.13.26 dB. And the directivity obtained by the 

roposed method is 22.11dBi, which is the highest. Although the 

ime of the proposed method required to obtain the locations of 

he reconstructed array is 3.86s, which is slightly larger than the 

ime 0.26s of the method in [17] , it is much faster than the time

11.08s and 37min of the methods in [28] and [20] . Moreover, the 

roposed method ensures high reconstruction accuracy for multi- 

le beampatterns simultaneously. It should be noted that the 3dB 

eamwidth, average SLL and error in Table 1 are only representa- 

ive of the results in Fig. 3 . Moreover, due to space constraints, the 

pecific values of the array element positions synthesized by the 

roposed algorithm and the corresponding weight vectors are in- 

luded in the QR codes in Fig. 8 . 

.2. Hybrid beampatterns 

In this subsection, we consider an 8 × 8 URA, that is Gr = 

 , Gc = 8 , with 	 x = 	 y = λ/ 2 . The initial desired beampatterns

re generated using the WORD algorithm presented in [35] . 
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Fig. 12. Comparison of initial and reconstructed patterns at u = 0.1, v = -0.3. (a) Initial patterns. (b) Reconstructed patterns. (c) Slice diagram at u = 0.1. (d) Slice diagram at 

v = -0.3. 

Fig. 13. Comparison of 3-D view of initial and reconstructed patterns at u = 0.1, v = 0.1. (a) 3-D view of initial pattern. (b) 3-D view of reconstructed pattern synthesized by 

the proposed method. (c) 3-D view of reconstructed pattern synthesized by the method in [28] . (d) 3-D view of reconstructed pattern synthesized by the method in [17] . (e) 

3-D view of reconstructed pattern synthesized by the method in [20] . (f) 3-D view of reconstructed pattern synthesized by the proposed method considering the coupling. 

12 
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Fig. 14. Comparison of top view of initial and reconstructed patterns at u = 0.1, v = 0.1. (a) Top view of initial pattern. (b) Top view of reconstructed pattern synthesized by 

the proposed method. (c) Top view of reconstructed pattern synthesized by the method in [28] . (d) Top view of reconstructed pattern synthesized by the method in [17] . (e) 

Top view of reconstructed pattern synthesized by the method in [20] . (f) Top view of reconstructed pattern synthesized by the proposed method considering the coupling. 

Table 2 

Performance comparison of the proposed method and other methods with the hybrid beampatterns . 

Parameters Methods 

proposed method [28] [17] [20] 

Initial 3dB beamwidth(u) 0.90 0.90 0.90 —

Reconstructed 3dB beamwidth(u) 0.86 0.90 0.95 0.81 

Initial 3dB beamwidth(v) 0.91 0.91 0.91 —

Reconstructed 3dB beamwidth(v) 0.85 0.91 0.95 0.83 

Target SLL -20dB -20dB -20dB -20dB 

Reconstructed average SLL -16.67dB -16.43dB -14.65dB -16.21dB 

Error ε 0.69dB 0.78dB 2.42dB —

Directivity (dBi) 12.96 12.87 10.94 11.06 

Number of reconstructed array elements 51 46 51 45 

Reduction ratio α 20.3% 28.1% 20.3% —

runtime 8.56s 375.38s 0.42s 12min 

Number of tested beampatterns 70 5 1 —

Fig. 15. Comparison of slice diagram of initial and reconstructed patterns at u = 0.1, v = 0.1. (a) Slice diagram at u = 0.1. (b) Slice diagram at v = 0.1. 

13 
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Fig. 16. Comparison of the positions of the new and initial elements for the hybrid 

patterns. 
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e selected P = 70 beampatterns, of which the mainlobe direc- 

ions of 35 beampatterns vary uniformly in [ u, v | u ∈ [ −0 . 2 , 0 . 2] , v ∈
 −0 . 3 , 0 . 3]] . And the remaining 35 beampatterns are flat-top beam-

atterns, the central axes of which also change uniformly in 

 u, v | u ∈ [ −0 . 2 , 0 . 2] , v ∈ [ −0 . 3 , 0 . 3]] , and the flat-top area is defined

s a square with a diagonal of 0.4. Moreover, the sidelobe levels of 

ll beampatterns are constrained to below -20 dB. 

Two focused and three flat-top beampatterns are selected for 

resentation in this example, and their beam axes (u, v ) are 

−0 . 2 , 0 . 1) , (0 . 2 , −0 . 1) , (−0 . 2 , 0 . 2) , (0 . 1 , −0 . 3) and (0 . 1 , 0 . 1) , re-

pectively. These two reconstruction focused patterns are pre- 

ented in Fig. 9 and Fig. 10 . They again confirm the effective- 

ess of the proposed algorithm for focused beampatterns, even in 

he hybrid multi-beampattern. The three flat-top beampatterns are 

hown in the Fig. 11 - Fig. 15 . Similarly, the method in [28] cannot

arry 70 beampatterns, so only five beampatterns demonstrated in 

ig. 9 - Fig. 15 were selected for testing. Since [17] can only process

ingle beampattern, only the result related to Fig. 13 is displayed. 

From Fig. 11 (a) and Fig. 11 (b), it can be observed that the re-

onstructed flat-top pattern is generally consistent with the initial 

eampattern. Moreover, the slices in Fig. 11 (c) and 11 (d) clearly 
Fig. 17. Comparison of initial and reconstructed patter

14 
how that the flat-top area of the reconstructed beampattern and 

hat of the initial beampattern basically overlap, despite the SLL 

ncreases. On the other hand, the beampatterns reconstructed by 

he algorithm in [28] and [20] differ significantly from the ini- 

ial beampattern, particularly in the flat-top area. Fig. 12 presented 

omparison of initial and reconstructed flat-top pattern of the 

ainlobe at (0 . 1 , −0 . 3) . And performance comparison results dis-

layed in Fig. 12 are similar to those in Fig. 11 . 

In Fig. 13 - Fig. 15 , the results obtained by the method in [17] are

dded to compare with the algorithm in [20,28] and the proposed 

lgorithm. Fig. 13 (a)- Fig. 13 (e) show the three-dimensional views 

f the initial beampattern and the beampatterns synthesized by 

he four methods. And the corresponding top views are shown in 

ig. 14 (a)- Fig. 14 (e). It is evident that the beampatterns synthe- 

ized by the three algorithms closely resemble the initial beam- 

attern. However, the beampattern synthesized by the algorithm 

n [17] has more sidelobes with higher level values than the beam- 

attern synthesized by the proposed algorithm. From the slice di- 

grams shown in 15 (a) and Fig. 15 (b), there are significant differ- 

nces between the beampatterns reconstructed by the algorithm in 

28] and the initial pattern in the flat-top region, and so is IDEA. 

hese results confirm the effectiveness of the proposed algorithm 

n synthesizing flat-top beampatterns. 

The elements distribution of the reconstructed and initial ar- 

ay is displayed in Fig. 16 . The aperture of the array recon- 

tructed by the proposed method is also slightly smaller than 

he original array. Compared with the proposed method, the ar- 

ay obtained by the algorithm in [28] has a more concentrated 

rray elements distribution, leading to a larger difference be- 

ween the reconstructed and the original beampatterns. Mean- 

hile, the algorithm in [17] does not perform well in the side- 

obes due to the limited positions of its array elements on the 

riginal grids, and the optimal performance cannot be obtained. 

oreover, in Fig. 17 (a) and Fig. 17 (b), there are more compar- 

sons of the focused beampatterns demonstrated, and their point- 

ng angles are (−0 . 2 , −0 . 2) , (−0 . 1 , −0 . 1) , (0 , 0) , (0 . 1 , 0 . 1) , and

0 . 2 , 0 . 2) , respectively. Similarly, more flat-top beampatterns are

hown in Fig. 18 (a) and Fig. 18 (b), and their central angles are

−0 . 2 , 0 . 3) , (−0 . 1 , −0 . 2) , (−0 . 1 , 0 . 2) , (0 . 1 , −0 . 2) and (0 . 2 , −0 . 3) .

hese results demonstrate the effectiveness of the proposed algo- 

ithm in both focused and flat-top beampatterns, compared to the 

xisting methods. Moreover, the 3D view, top view and slice di- 

grams of the beampattern synthesized by the proposed method 

ith mutual coupling are shown in Fig. 13 (f), 14 (f), 15 (a) and 15 (b).
ns. (a) Slice diagram at u. (b) Slice diagram at v. 
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Fig. 18. Comparison of initial and reconstructed patterns. (a) Slice diagram at u. (b) Slice diagram at v. 

Fig. 19. QR codes for the WORD pattern. (a) the locations of x. (b) the locations of y. (c) excitations of Fig. 9 . (d) excitations of Fig. 10 . (e) excitations of Fig. 11 . (f) excitations 

of Fig. 12 . (g) excitations of Fig. 13 . 
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In Table 2 , we present additional data to further demonstrate 

he performance of the proposed method. The number of array 

lements is reduced from 70 to 51, resulting in a reduction ratio 

f 20.3%. The average SLL of the reconstructed beampattern us- 

ng the proposed method is -16.67dB, which is better than that 
15 
f -16.43dB, -14.65dB and -16.21dB obtained by the algorithms 

n [17,28] and [20] . Moreover, the average error of the proposed 

ethod, the algorithm in [28] and [17] are 0.69dB, 0.78dB and 

.42dB, respectively, with the proposed method having the small- 

st average error. And the directivity obtained by the proposed 
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ethod is 12.96dBi, which is the highest. The time required by the 

roposed method to obtain the locations of the reconstructed ar- 

ay is 8.56s, while the time required by the method in [17,28] and 

20] are 375.38s, 0.42s and 12min, respectively. It should be noted 

hat the 3dB beamwidth, average SLL and error in Table 2 are only 

epresentative of the results in Fig. 13 . Moreover, the specific val- 

es of the array element positions synthesized by the proposed al- 

orithm and the corresponding weight vectors are included in the 

R codes in Fig. 19 . 

. Conclusion 

In this paper, we have derived the relationship between the po- 

itions of the array elements and the column space of the data 

atrix based on unitary ESPRIT. Meanwhile, the low rank approx- 

mation has been used to reduce the number of reconstructed ar- 

ay elements. Finally, we have proposed a two-dimensional closed- 

orm method for the synthesis of sparse planar arrays with multi- 

eampattern. The proposed method achieves automatic coordinate 

airing of the array elements between X-axis and Y-axis. And the 

roposed algorithm saves 20% to 30% of elements, while maintain- 

ng an acceptable approximation error. Compared with the exist- 

ng algorithm, the algorithm can handle a larger number of desired 

atterns and does not require additional pairing searches. This re- 

ults in improved synthesis accuracy, as well as cost and time sav- 

ngs due to its low complexity. Future work can investigate the 

pplication of the proposed method in different scenarios and ex- 

lore the potential of combining it with other beamforming tech- 

iques. 
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