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This paper presents a novel strategy to simultaneously estimate
the direction of arrival (DOA) of a source signal and the phase error
of a partly calibrated array with arbitrary geometry. We add up the
snapshot data of two different sensors, and then extract a knowledge
associated with the DOA and phase errors of these two elements by
using singular value decomposition. In such a manner, we can estab-
lish a series of linear equations with respect to the unknown DOA and
phase error, by simply conducting the procedure on any two sensor
elements. On this basis, it can be shown that the problem of jointly
estimating DOA and phase error is equivalent to a least square (LS)
problem with a quadratic equality constraint. To solve this LS prob-
lem (so that the DOA and phase error can be obtained), an effective
convex–concave procedure is employed. Different from the conven-
tional algorithms that are limited to specific array geometries, the
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proposed one is suitable for arrays with arbitrary geometries. More
importantly, the devised method only requires one extra calibrated
sensor, which is not necessarily adjacently located with the reference
one. Several simulations are carried out in this paper and the effec-
tiveness of the devised method can be clearly observed.

I. INTRODUCTION

Array signal processing has been extensively applied
in the fields like radar, navigation, wireless communica-
tion, and so forth. One of the most important topics in
array processing is direction-of-arrival (DOA) estimation
[1]–[6], in which the DOAs of plane waves impinging on a
sensor array need to be determined. Many high-resolution
eigendecomposition methods such as multiple signal clas-
sification (MUSIC) [7], estimation of signal parameter via
rotational invariance technique (ESPRIT) [8], and maxi-
mum likelihood (ML) [9] have been devised to tackle the
problem of DOA estimation. However, it has been generally
accepted that the performance of these methods is critically
dependent on the knowledge of the array manifold. Unfor-
tunately, the array perturbations are inevitable in practical
applications, and hence the estimators performance would
degrade substantially when errors exist and the assumed
observation model deviates from real situation.

Many efforts have been devoted to DOA estimation
when an array suffers from unexpected perturbations [10]–
[19]. In particular, Friedlander and Weiss proposed an alter-
native iterative method (named as WF method) [20], which
is able to estimate the DOAs and gain–phase error of each
sensor element simultaneously. However, this method may
be considerably deteriorated in the presence of large phase
uncertainties. The eigenstructure based methods in [21] and
[22] perform well especially when the phase error is large.
However, both of these two methods require two calibration
signals to estimate the unknown parameters. Boon Chong
and Chong Meng Samson [23] have developed a calibration
approach by taking advantage of the ML theory. However,
it suffers from heavy computational load and requires a set
of calibration sources in known locations. A phase retrieval
based method is reported in [24] to estimate DOAs and
array errors, when multiple signals exist. By modeling the
array perturbations as random parameters, a maximum a
posteriori approach is proposed in [25] to estimate these
perturbations. This algorithm is able to calibrate the sensor
array in an automatic way, but it requires knowledge of
the second-order statistics of the perturbation parameters.
A subspace method for estimating array gains and phases
is proposed in [26], and a satisfactory performance can
be obtained if the angles of DOAs are known. A practical
calibration technique is developed in [27], by using the MU-
SIC null spectrum property. This method is applicable for
arbitrary array; however, it achieves desirable performance
under the assumption that one or more signal sources are
known. A blind signal separation based DOA estimation
and array error calibration method is recently reported in
[28], where an inefficient search of two-dimensional (2-D)
spatial spectrum is needed.
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In addition, there are also several other excellent ap-
proaches to array error calibration developed by utilizing
the geometry structure of array or the special property of
covariance matrix. For example, Paulraj and Kailath [29]
estimate gain/phase error of a uniform linear array (ULA)
by taking advantage of the Toeplitz structure of covariance
matrix. This method is further modified in [30] with a supe-
rior performance and a dramatically reduced complexity. In
[31], the problem of DOA estimation in the presence of an
unknown phase error of a ULA is addressed, by exploiting
the information available in the sample covariance matrix.
The partial Toeplitz structure of the covariance matrix is
employed in [32] to estimate the model errors of nested
sensor arrays. For the above-mentioned methods, their gen-
eralizations to arrays with arbitrary geometries cannot be
easily extended.

Recently, partly calibrated arrays [33]–[35] have re-
ceived great research interests. A partly calibrated array
assumes that some sensor elements have been perfectly
calibrated, whereas others remain uncalibrated. It has been
shown in [36] that if each subarray is calibrated, a spectral
rank-reduction algorithm can be utilized to determine the
DOAs. By exploiting the principle of conventional ESPRIT
scheme, a computationally efficient ESPRIT-like algorithm
is devised in [37], where the DOAs as well as the unknown
gains and phases in the uncalibrated portion of the array can
be simultaneously estimated using a closed-form expres-
sion. In [38], the ESPRIT-like algorithm is further investi-
gated. More specifically, the identifiability of DOA estima-
tion is addressed in detail and a refining scheme is proposed
to improve the performance. Besides, the ESPRIT-like al-
gorithm has been recently extended in [39] to the scenario
of nonuniform noise circumstance. It should be noted that
the above approaches in [36]–[39] require at least one pair
of consecutive calibrated sensors. Moreover, the ESPRIT-
like algorithm is limited to ULAs, and its generalization to
other array configurations is not well considered.

To overcome the imperfections of the above algorithms,
a new method is presented in this paper to jointly estimate
the DOA and phase error of a partly calibrated array with
arbitrary geometry. The proposed method is able to esti-
mate the DOA of a single signal as well as the phase errors
of array elements, by using one calibrated sensor that is
different from the reference one. This paper was previously
presented in part in [1]; we extend the preliminary work
by modifying the algorithm and enriching the simulations.
More specifically, the devised approach is developed on the
basis of the well-known Euler’s formula. Analysis shows
that the summation of snapshot data of two different sensor
elements provides knowledge about the DOA of the sin-
gle source and the phase errors of corresponding sensors.
Based on this observation, we establish a least square (LS)
problem with a quadratic equality constraint, by adding up
snapshot data of any two elements and then carrying out
a singular value decomposition (SVD) procedure. We re-
cover the DOA and phase errors simultaneously by solving
the LS problem with the convex–concave procedure (CCP)
[40], which is more efficient than the previous generalized

Fig. 1. Illustration of a partly calibrated array (the solid circle denotes
the reference sensor and the triangle symbol stands for the

calibrated sensor).

singular value decomposition (GSVD) approach in [1] and
results a better performance than the semidefinite relaxation
(SDR) approach in the same reference. Different from the
conventional algorithms that are limited to specific array
configurations, the proposed one is suitable for arrays with
arbitrary geometries. More importantly, the devised method
only requires one extra calibrated sensor, which is not nec-
essarily adjacently located with the reference one. It should
be noted that our method is still applicable if multiple sen-
sors were calibrated. Moreover, for a fully uncalibrated
array, the proposed method also works after simple mod-
ifications as detailed later. In addition, the single source
can be a noncooperative source whose angle needs to be
estimated or a calibration source (whose angle is also not
precisely known) assigned to calibrate the array. In the lat-
ter case, we can first calibrate the array using the single
source, and then apply the calibrated array to estimate non-
cooperative source whose number may be greater than one.
We should also point out that the proposed algorithm has
no ability to calibrate mutual coupling and array shape per-
turbation. This is a limitation that needs to be addressed in
our future study. Various simulations are carried out to illus-
trate the effectiveness of the devised method under different
situations.

The rest of the paper is organized as follows. In
Section II, the problem of DOA and phase error estimation
for a partly calibrated array is introduced. The proposed
algorithm is presented in Section III and the Cramér–Rao
bounds (CRBs) are derived in Section IV. Representative
simulations are conducted in Section V and conclusions are
drawn in Section VI.

II. PROBLEM FORMULATION

Consider a planar array with N omnidirectional sensors.
Without loss of generality, we focus on the case that the
array and signal source are coplanar, although its extension
to more generalized cases is straight forward. It is assumed
that one single source impinges on the array from θ (see
Fig. 1). Under ideal circumstance, the nominal steering
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vector a(θ) is given by

a(θ) = [1, ej2πλ−1pT
2 r, . . . , ej2πλ−1pT

N r]T (1)

where (·)T denotes the transpose operator, j = √−1 is the
imaginary unit, pn = [xn, yn]T stands for the coordinate of
the nth sensor (n = 1, 2, . . . , N), and r = [cos(θ), sin(θ)]T

is the unit vector corresponding to the direction θ .
Under practical scenario, the phase error exists, and the

actual steering vector ar (θ) satisfies

ar (θ) = �a(θ) (2)

where � is the phase error matrix as

� = diag{[ejφ1, ejφ2, . . . , ejφN ]} (3)

with φn denoting the phase error of the nth sensor and
diag(·) returning a diagonal matrix whose diagonal equals
the input vector. In this paper, we take the first sensor as
the reference one, i.e., φ1 = 0. Accordingly, the received
vector of array can be expressed as

x(t) = ar (θ)s(t) + n(t) = �a(θ)s(t) + n(t) (4)

where s(t) contains the complex envelope of the signal,
and n(t) is a complex Gaussian white additive N × 1 noise
vector. In addition, we assume that

E
{
s(t)s∗(t)

} = σ 2
s (5a)

E
{
n(t)nH(t)

} = σ 2
n I (5b)

where σ 2
s and σ 2

n stand for the powers of signal and noise,
respectively. The snapshot data matrix composed of L snap-
shots can be written as

X = [x(1), x(2), . . . , x(L)] = �a(θ)S + N (6)

where S = [s(1), . . . , s(L)] and N = [n(1), . . . , n(L)].
Note that only phase error is considered in the above model.
In some cases, there also exists gain error among sensor ar-
ray elements. Under this circumstance, the actual steer-
ing vector is given by ar (θ) = G�a(θ), where G is an
N × N diagonal matrix with the nth diagonal element gn,
n = 1, . . . , N . As reported in [21], the gain error gn can be
estimated by

ĝn =
√√√√R(n, n) − 1

N−1

∑N
n=2 ρn

R(1, 1) − 1
N−1

∑N
n=2 ρn

(7)

where R stands for the covariance matrix that can be esti-
mated using the snapshot data X, ρn is the nth eigenvalues
of R, n = 1, . . . , N . Once ĝn (n = 1, . . . , N) is obtained,
we can compensate the gain error and leave only the phase
error.

Obviously, the conventional direction finding methods
would fail if phase error exists, due to the mismatch between
the actual and nominal array manifolds. In this paper, we
consider how to estimate DOA and phase error for a partly
calibrated array. More specifically, we assume that one sen-
sor (except the reference one) whose label is c has been
calibrated. In this case, it can be assumed that φc is known.

Our objective is to jointly estimate the DOA θ and phase
error from array output X.

III. PROPOSED METHOD

In this section, the main concept of the proposed method
is given by taking advantages of Euler’s formula. Then, an
effective strategy is provided to improve the practicality of
the proposed scheme. We convert the estimation of DOA
and phase error into an LS problem with a quadratic equal-
ity constraint, and solve the LS problem using the CCP
approach.

A. Main Idea of Estimating DOA and Phase Error

Before presenting the details to estimate DOA and phase
error of a partly calibrated array, we first give the following
formula:

ejA + ejB = 2�(ej A−B
2 )ej A+B

2 (8)

where both A and B are real values, and �(·) outputs the
real part of the bracketed term. The expression (8) can be
readily derived from Euler’s formula and plays an important
role in our following discussion.

To begin with, let A(n, :) be the nth row of matrix A.
Recalling (6), one easily obtains that

X(n, :) = ej (2πλ−1pT
nr+φn)S + N(n, :). (9)

Define Xi+k as the summation of X(i, :) and X(k, :), i.e.,

Xi+k � X(i, :) + X(k, :). (10)

Combining (9) and (10), and utilizing (8), we have

Xi+k = X(i, :) + X(k, :)

=
(
ej (2πλ−1pT

i r+φi ) + ej (2πλ−1pT
k r+φk)

)
S + Ni+k

= ci+ke
j	i+k S + Ni+k (11)

where Ni+k = N(i, :) + N(k, :) is the compound noise, ci+k

is a real value as

ci+k = 2�
(
ej (πλ−1(pi−pk)Tr+ φi−φk

2 )
)

. (12)

The 	i+k in (11) relates to the unknown parameters φi , φk ,
and θ , more precisely, it satisfies

	i+k = πλ−1(pi + pk)Tr + (φi + φk)/2 = bT
i+ku (13)

where u represents the parameter vector as

u = [φ1, φ2, . . . , φN, cos(θ), sin(θ)]T ∈ R
N+2. (14)

bi+k = [0, . . . , 0, 1/2, 0, . . . , 0, 1/2, 0, . . . , 0, πλ−1xn,

πλ−1yn]T ∈ R
N+2 (15)

bi+k in (13) is the corresponding coefficient vector as.
Notice that in bi+k , the ith and the kth elements are 1/2, and
the last two entries are πλ−1xn and πλ−1yn, respectively.

According to (13), we know that 	i+k is a linear com-
bination of the phase errors (i.e., φi and φk) and two map-
pings of DOA (i.e., cos(θ) and sin(θ)). Based on this fact,
it is possible to recover the unknown phase error and DOA
by exploiting the knowledge of 	i+k .
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To obtain an estimation of 	i+k , we construct Yi+k as

Yi+k =
[

X(1, :)

Xi+k

]

=
[

1

ci+ke
j	i+k

]

S +
[

N(1, :)

Ni+k

]

. (16)

According to the subspace principle, the following equality
can be established:

span

([
1

ci+ke
j	i+k

])

= span (γ i+k) (17)

where span(·) returns the range space of the input matrix,
and γ i+k is the principal left singular vector of Yi+k . More
specifically, γ i+k can be obtained with the help of SVD of
Yi+k as

Yi+k = [γ i+k, U2
]

︸ ︷︷ ︸
U

�VH (18)

where U and V denote the left singular vectors and right
singular vectors of Yi+k , respectively. Assuming that the
first entry of γ i+k has been normalized to one, it can be
readily obtained from (17) that

ci+ke
j	i+k = γ i+k(2) (19)

where γ i+k(2) stands for the second entry of γ i+k . The
expression (19) is an essential formulation for the analysis
next.

Note that ci+k in (19) may be either positive or negative.
Moreover, 	i+k may locate beyond the range of [0, 2π].
Therefore, if no prior knowledge of the sign of ci+k or a
rough estimation of 	i+k is available, the 	i+k cannot be
accurately estimated. Fortunately, provided that

abs(	i+k) ≤ π/2 (20)

one derives from (19) that

	i+k = bT
i+ku = ∠ (γ i+k(2)) � atan

(�(γ i+k(2))

�(γ i+k(2))

)
(21)

where ∠(·) returns the (principal) argument of the input
complex number and its definition has been implicitly given
on the right-hand side of (21). Since the resulting 	i+k in
(21) locates in [−π/2, π/2], a correct estimation of 	i+k

can thus be obtained. From the above discussion, we know
that if (20) holds true, (21) provides a measurement of φi ,
φk , and θ , with a specific weighting coefficient bi+k .

Recalling the assumed setting for a partly calibrated
array (i.e., φ1 = 0 and φc is known a priori), (21) can be
rearranged as

wT
i+kv = ∠ [γ i+k(2)] − φcb(c) (22)

where v = [φ2, . . . , φc−1, φc+1, . . . , φN, cos(θ), sin(θ)]T is
a modified parameter vector by removing φ1 and φc from
u, and wi+k is similarly obtained by removing the corre-
sponding terms from bi+k .

To summarize, by taking various of pairs of i and k

(satisfying i, k = 1, 2, . . . , N and i 	= k), a series of linear
equations [i.e., (22)] with respect to the unknown param-
eters can be obtained. Therefore, if we can obtain enough

Fig. 2. Illustration of the proposed scheme.

equations, it is possible to determine all the unknown pa-
rameters. To have an intuitive perspective of the proposed
scheme, an illustration of the devised strategy is demon-
strated in Fig. 2, from which the proposed method can be
clearly understood.

However, notice again that the linear equation of (21)
or (22) is developed on the precondition of (20), which is
not easily satisfied in practice. In other words, there may
be only quite a few portion of pairs of i and k happened to
meet condition (20). As a consequence, it would result in an
underdetermined problem, which gives innumerable solu-
tions. To handle this difficulty, we introduce a useful method
in the following section. Using this strategy, the practicality
of the proposed scheme can be greatly improved.

REMARK 1 Note that if there exists an additional mutual
coupling error between sensor elements, the above discus-
sion will not be true any longer. To see this point, we denote
by C ∈ C

N×N the mutual coupling matrix. In this case, the
actual steering vector ar (θ) satisfies

ar (θ) = C�a(θ).

Since C is complex symmetry with unit elements on
diagonal, we can readily express the nth entry of ar (θ)
(denoted by [ar (θ)]n) as

[ar (θ)]n = ej (2πλ−1pT
nr+φn) +

N∑

l=1,l 	=n

C(n, l)ej (2πλ−1pT
l r+φl )

where C(n, j ) represents the nth row and the j th column
element of C. On this basis, it is not hard to obtain that

Xi+k = X(i, :) + X(k, :) = (ci+ke
j	i+k + εi+k)S + Ni+k

where an additional bias εi+k (its value depends on C(i, :),
C(k, :), and �) is incorporated compared to (11). Then ac-
cording to the subspace principle, we can obtain an estimate
of ∠(ci+ke

j	i+k + εi+k), but not the phase 	i+k as derived
in (21). As a result, the mutual coupling seriously degrades
the performance of our method. One can apply the array in-
terpolation methods in [16]–[19] to realize the calibration
under this circumstance, by deploying additional sources.
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B. Method to Improve Practicality

Before proceeding, it is reasonably assumed that φn

(n = 1, 2, . . . , N) is zero mean and uniformly distributed
in the range [−�, �]. More clearly, φn satisfies

φn ∈ [−�, �] . (23)

Additionally, we suppose that the DOA of the source signal
locates in the set D as

D = {θ ∣∣θ0 − δθ ≤ θ ≤ θ0 + δθ

}
(24)

where θ0 is a coarse estimation of the DOA that can be easily
obtained by using a conventional direction finding method
such as Capon beamforming [41]; δθ in (24) describes the
perturbation of the DOA estimation.

Instead of dealing with 	i+k directly, here we define a
shifted version of 	i+k as

	̃i+k � 	i+k − Ci+k (25)

where Ci+k stands for the shifted factor. Provided that Ci+k

is known, we can easily recover 	i+k from 	̃i+k . Therefore,
leaving the original condition (20) aside, we will consider
how to satisfy the following condition, i.e.,

abs(	̃i+k) ≤ π/2. (26)

To satisfy the above inequality (26), we should select a
suitable Ci+k such that 	̃i+k is symmetrically distributed.
In such an approach, the maximal absolute of 	̃i+k is mini-
mized, and then condition (26) can be satisfied more easily.
Moreover, one recalls (23) and gets that

(φi + φk)/2 ∈ [−�, �] (27)

which implies that (φi + φk)/2 is symmetrically distributed.
Since 	̃i+k = πλ−1(pi + pk)Tr + (φi + φk)/2 − Ci+k , the
above discussion suggests that a (good) sufficient condition
satisfying (26) is given by

πλ−1(pi + pk)Tr − Ci+k ∈ [−�i+k, �i+k] , ∀θ ∈ D (28a)

� + �i+k ≤ π/2. (28b)

Note that in (28a), a dummy variable �i+k is introduced so
that the resultant πλ−1(pi + pk)Tr − Ci+k is symmetrically
distributed.

To satisfy condition (28a), we can set Ci+k as

Ci+k = (α(i+k)
max + α(i+k)

min

)
/2 (29)

with α(i+k)
max and α(i+k)

min being determined by

α(i+k)
max = max

θ∈D
(
πλ−1(pi + pk)Tr

)
(30a)

α(i+k)
min = min

θ∈D
(
πλ−1(pi + pk)Tr

)
. (30b)

Under the above settings of (29) and (30), it yields

�i+k = (α(i+k)
max − α(i+k)

min

)
/2. (31)

Furthermore, combining (28) and (31), the sufficient con-
dition to satisfy (26) can be expressed as

� + (α(i+k)
max − α(i+k)

min

)
/2 ≤ π/2. (32)

Consequently, (26) becomes true once the above inequality
(32) has been satisfied. It should be also noted that for a
given pair of i and k, one can determine whether formula
(32) is valid offline, i.e., not relying on the snapshot data
X. What remains may be how to further obtain an estimate
of 	̃i+k and then build a linear equation with respect to the
unknown θ and φn. We will present the details next.

Generally speaking, 	̃i+k can be similarly obtained with
the procedure described in the previous section, except for
carrying out a compensation e−jCi+k for data X.

More specifically, if (32) is satisfied for the given pair
i and k, we can utilize e−jCi+k to compensate X(i, :) and
X(k, :), and then sum them up to obtain X̃i+k as

X̃i+k = X(i, :)e−jCi+k + X(k, :)e−jCi+k . (33)

Recalling (11), X̃i+k can be further expressed as

X̃i+k = ci+ke
j	̃i+k S + Ñi+k (34)

where Ñi+k = N(i, :)e−jCi+k + N(k, :)e−jCi+k . Notice that
the item 	̃i+k = 	i+k − Ci+k has appeared in (34). Since
abs(	̃i+k) ≤ π/2, an estimation of 	̃i+k can be unambigu-
ously obtained as

	̃i+k = ∠ (γ̃ i+k(2)) (35)

where γ̃ i+k is the principal left singular vector of Ỹi+k

satisfying

Ỹi+k =
[

X(1, :)

X̃i+k

]

=
[

1

e−jCi+k

]

Yi+k (36)

with Yi+k being defined as in (16). Note that in (35), we
implicitly assumed that γ̃ i+k is the normalized version with
a unit in its first entry.

Once 	̃i+k has been estimated, we can construct the
following linear equation:

wT
i+kv = ∠ [γ̃ i+k(2)] − φcb(c) + Ci+k � di+k. (37)

Here, note that we establish the above equation on the basis
of γ̃ i+k , not using γ i+k . Since condition (32) is more easily
satisfied than (20), we can say that more equations like (37)
can be obtained. As a consequence, the practicality of the
proposed scheme is greatly improved.

C. LSs Problem With a Quadratic Constraint

Given i and k, a practical strategy is provided in the
previous section to construct a linear equation [i.e., (37)]
with respect to the unknown DOA θ and phase error φ,
under specific condition. As pointed out in Section III-A,
one can build a certain number (up to N(N − 1)/2 at most)
of linear equations by taking different values of i and k, with
i, k = 1, 2, . . . , N and i 	= k. By doing so, all the unknown
parameters may be well recovered.

More specifically, let us define W as the matrix piled up
by wT

i+k along column direction, and define d as the data
vector piled up by di+k , where i and k are some specific
indexes that satisfy (32). Then, the problem of DOA and
phase error estimation can be described as the following LS

ZHANG ET AL.: DOA AND PHASE ERROR ESTIMATION FOR A PARTLY CALIBRATED ARRAY WITH ARBITRARY GEOMETRY 501

Authorized licensed use limited to: The George Washington University. Downloaded on April 05,2020 at 02:33:03 UTC from IEEE Xplore.  Restrictions apply. 



optimization problem with a quadratic constraint:

min
v

‖Wv − d‖2
2 (38a)

s.t. ‖Zv‖2
2 = 1 (38b)

where the constraint matrix Z = [O2×(N−2) I2
]

is intro-
duced to satisfy cos2θ + sin2θ = 1, and ‖ · ‖2 stands for
the Euclidean norm. It is known from [42] that the problem
of (38) can be solved provided that

rank
([

WT ZT
]T) = N (39)

which can be determined offline without using any snapshot
data. Once problem (38) has been solved (denote the solu-
tion as v̂), the DOA θ and phase error φ can be estimated
out accordingly. More precisely, the unknown θ and φ can
be obtained as

θ̂ = asin(̂v(N)) (40)

and

φ̂n =
{

v̂(n − 1), if 2 ≤ n < c

v̂(n − 2), if c < n ≤ N
(41)

respectively. Clearly, one problem remained is how to solve
the optimization problem (38). We will take this issue into
consideration in the following section.

REMARK 2 Note that formulation (38) is developed on the
basis of a general 2-D array. For the 1-D linear array, con-
straint (38b) becomes unnecessary and a traditional LS
problem can be resulted. In this case, we can obtain DOA
and phase errors with a closed-form expression.

D. Approach to Solving Problem (38)

In our previous work [1], we have presented two solvers,
i.e., GSVD and SDR, to find the solution of the noncon-
vex problem (38). For the GSVD-based method, it needs
to solve a nonlinear equation that may be computationally
inefficient. As for the second solver, i.e., the SDR-based
method, it may bring a performance loss since the original
problem is relaxed for computation convenience. To over-
come these imperfections, in this section we use the CCP
to solve problem (38). As shown in our later simulations,
the CCP approach obtains a better performance than that of
the SDR method.

Basically, CCP is a powerful method used to find solu-
tions to difference of convex (DC) programming problems.
As pointed out in [40], the class of DC functions is very
broad, and a DC program is not convex so that it is hard to
solve in general. In CCP approach, the original DC program
is solved by iteratively conducting convexifying procedure
and solving the convex program. As shown in [40], the
convergence property of CCP can be well guaranteed.

To apply the CCP approach, we first reformulate prob-
lem (38) as

min
v

vTWTWv − 2dTWv (42a)

s.t. vTZTZv = 1. (42b)

By carrying out the eigenvalue decomposition procedure,
one obtains that

WTW =
N∑

n=1

λnqnqH
n

=
C∑

n=1

λnqnqH
n

︸ ︷︷ ︸
�B +

−
N∑

n=C+1

|λn|qnqH
n

︸ ︷︷ ︸
�B −

(43)

where λn and qn (n = 1, . . . , N) denote the eigenvalue and
its corresponding eigenvector, respectively. Moreover, it is
assumed that the eigenvalues have been arranged to satisfy

λ1 ≥ · · · ≥ λC ≥ 0 > λC+1 · · · ≥ λN. (44)

According to (44), it is easily found that the matrices B +
and B − in (43) are positive semidefinite.

On the other hand, one also readily derives that

ZTZ =
[

ON−2 O(N−2)×2

O2×(N−2) I2

]

= IN︸︷︷︸
�P +

−
[

IN−2 O(N−2)×2

O2×(N−2) O2

]

︸ ︷︷ ︸
�P −

. (45)

Obviously, both P + and P − above are positive semidefi-
nite.

As a consequence, problem (42) is equivalent to

min
v

vTB + v − (vTB − v + 2dTWv) (46a)

s.t. vTP + v − vTP − v = 1 (46b)

where B + , B − , P + , and P − have been defined in (43)
and (45). Apparently, the objective function in (46a) is a
DC one. Therefore, the CCP approach can be employed as
long as constraint (46b) is also a DC function. To this end,
we further reformulate problem (46) as

min
v

vTB + v
︸ ︷︷ ︸

�f0(v)

− (vTB − v + 2dTWv)
︸ ︷︷ ︸

�h0(v)

(47a)

s.t. vTP + v
︸ ︷︷ ︸

�f1(v)

− (vTP − v + 1)
︸ ︷︷ ︸

�h1(v)

≤ 0 (47b)

(vTP − v + 1)
︸ ︷︷ ︸

�f2(v)

− vTP + v
︸ ︷︷ ︸

�h2(v)

≤ 0. (47c)

It can be seen that all the functions fl(v) and hl(v) (l =
0, 1, 2) in problem (47) are convex, due to the fact that
B + , B − , P + , and P − are positive semidefinite. Then
according to the definition in [40], problem (47) is a DC
program, which can be solved by CCP approach.

In CCP method, more specifically, the procedure is
started from an initial point in the feasible set. For problem
(42) or (47), we can set k = 1 and initialize

v1 = [0, . . . , 0, cos(θ0), sin(θ0)]T ∈ R
N (48)
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Algorithm 1: CCP Approach to Solving Problem (38).
1: set k = 1 and initialize v1 by (48)
2: while not convergent do
3: solve problem (51) and denote the solution

as vk,�

4: set k = k + 1
5: set vk = vk−1,�

6: end while
7: output the solution v̂ = vk

where θ0 is a coarse estimation of the DOA as we afore-
mentioned. In the kth step of the CCP approach, problem
(47) is convexified by replacing hl(v) (l = 0, 1, 2) with the
function ĥl(v; vk) as

ĥl(v; vk) � hl(vk) + hT
l (vk)(v − vk), l = 0, 1, 2. (49)

Since ĥl(v; vk) is affine with respect to v, we know that
fl(v) − ĥl(v; vk) is convex for l = 0, 1, 2. More precisely,
we have

ĥ0(v; vk) = h0(vk) + 2(vT
k B − + dTW)(v − vk)

= 2(vT
k B − + dTW)v − vT

k B − vk (50a)

ĥ1(v; vk) = h1(vk) + 2vT
k P − (v − vk)

= 2vT
k P − v − vT

k P − vk + 1 (50b)

ĥ2(v; vk) = h2(vk) + 2vT
k P + (v − vk)

= 2vT
k P + v − vT

k P + vk. (50c)

Accordingly, the convexified version of (47) (by replacing
hl(v) with ĥl(v; vk), l = 0, 1, 2) becomes

min
v

vTB + v − 2(vT
k B − + dTW)v (51a)

s.t. vTP + v ≤ 2vT
k P − v − vT

k P − vk + 1 (51b)

vTP − v + 1 ≤ 2vT
k P + v − vT

k P + vk. (51c)

Once the solution to (51) (denoted as vk,�) has been
obtained, we can set k = k + 1, and then resolve problem
(51) by taking vk = vk−1,�. This procedure is repeatedly
carried out until a convergence criterion is satisfied. Finally,
we can obtain the estimation of v as v̂ = vk . This completes
the solving of problem (38). To make it clear, we summarize
the CCP approach to problem (38) in Algorithm 1.

As aforementioned, once the solution v̂ to problem (38)
has been obtained, the DOA and phase error can be uniquely
determined. To conclude, we give a step-by-step description
of the proposed approach in Algorithm 2.

REMARK 3 Note that in the above discussions, we assume
that one sensor has been calibrated. This condition can
be satisfied in some cases as mentioned in [33]–[39].
For an existing array that is completely uncalibrated, our
algorithm still works if we first select a sensor as the
calibrated one. More specifically, in this case we can
first apply the self-calibration algorithm (e.g., methods in
[29] and [30] for ULAs and methods in [20] and [26] for
arbitrary arrays) to obtain a rough estimation of DOA and

Algorithm 2: Proposed Algorithm.
1: give a coarse estimation of θ and set the result as

θ0, denote the perturbation of DOA estimation by
δ, prescribe the maximum value of |φn|
(n = 1, 2, · · · , N) as �.

2: for i = 1 → N do
3: for k = 1 → N, k 	= i do
4: obtain α(i+k)

max and α(i+k)
min by (30)

5: if condition (32) is true then
6: obtain vector bi+k from (15)
7: obtain vector wi+k by modifying bi+k

8: compute Ci+k using (29)
9: obtain X̃i+k as (33)

10: construct Ỹi+k as (36)
11: compute γ̃ i+k through SVD of Ỹi+k

12: obtain di+k from (37)
13: end if
14: end for
15: end for
16: construct W and d
17: if rank

([
WT ZT

]T) == N then
18: solve problem (38) by using the CCP

approach (see Algorithm 1) and obtain the
solution v̂

19: obtain θ̂ and φ̂n from (40) and (41),
respectively

20: else
21: set θ̂ = θ0 and φ̂n = 0

(n = 2, . . . , c − 1, c + 1, . . . , N)
22: end if
23: Output: θ̂ and φ̂n.

phase error. Then, the sensor (excluding the reference one)
with the less phase error estimation deviation (from the
presumed value) is selected as the calibrated sensor for
our method (mainly because it is more likely to obtain a
relatively high estimation accuracy), and the corresponding
estimated phase error is set as the calibrated value (i.e.,
φc in the above discussions). Finally, we can carry out our
algorithm to obtain a better estimation using the automat-
ically specified calibrated sensor. Numerical test shows
that this strategy works well as presented in the simulation
part. Moreover, the above scheme makes the proposed
method feasible to calibrate arrays without any additional
assumptions, by simply assigning a calibration source with
inaccurate orientation. Also, with the above procedures, we
can automatically calibrate multiple antenna arrays with
the same kind, by applying the above-mentioned approach
to one sampling of the arrays. This is extremely practical
when antenna arrays are available on chips.

IV. CRAMÉR–RAO BOUNDS

In this section, we give the CRBs for the estimations of
DOA and phase error in the original problem statement in
Section II.
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From Section II, one can readily express the covariance
matrix as

R = σ 2
s �a(θ)aH(θ)�H + σ 2

n I = σ 2
s ar (θ)aH

r (θ) + σ 2
n I.

Following the derivation result in [37], the CRB for the
unknown DOA θ can be given by

CRB(θ) = 1

2σ 4
s N

{
�
(

aH
r (θ)R−1ar (θ)ȧH

r (θ)R−1ȧr (θ)

+ (
aH

r (θ)R−1ȧr (θ)
)2)}−1

where ȧr (θ) is defined as

ȧr (θ) � ∂ar (θ)

∂θ
. (52)

On the other hand, denote

φ = [φ2, . . . , φc−1, φc+1, . . . , φN ]T . (53)

Then, the CRB for the phase error estimation can be ob-
tained according to [37] as

CRB(φ) = 1

2σ 4
s N

{
�
(

J
[ (

ar (θ)aH
r (θ)R−1ar (θ)aH

r (θ)
)�

(R−1)T − (ar (θ)aH
r (θ)R−1

)� (ar (θ)aH
r (θ)R−1

)T ]JT
)}−1

where J is an (N − 2) × N matrix with its (i, j )th entry
being

Ji,j =

⎧
⎪⎨

⎪⎩

1, if i ≤ c − 2 and i = j − 1

1, if i > c − 2 and i = j − 2

0, otherwise

. (54)

We will use CRB(θ) and CRB(φ) to measure the perfor-
mance of DOA and phase error estimation in the following
section.

V. NUMERICAL RESULTS

In this section, representative simulations are carried out
to demonstrate the effectiveness of the proposed method.
The phase error {φn}Nn=1 of sensors is generated by [21]

φn =
√

12σφβn (55)

where βn is independent and identically distributed ran-
dom variable, which is distributed uniformly in the range
of [−0.5, 0.5], σφ acts as the standard deviation of φn,
n = 1, . . . , N . To present the performance of the proposed
method, we next consider three cases using two arrays with
different geometries. Note that in the former two cases the
array contains a calibrated sensor, whereas in the third case
we use a fully uncalibrated array as an extension to show
the wide applicability of the proposed algorithm.

A. ULA With One Calibrated Sensor

In the first case, let us consider a ULA of N = 15 ele-
ments spaced by half wavelength. The elements are labeled
in sequence from 1 to N . The first sensor is assumed to
have been calibrated (i.e., c = 1) and the eighth sensor (lo-
cating at origin) is taken as the reference one. Consider

Fig. 3. RMSEs of estimates versus standard deviation of phase error for
a ULA. (a) DOA estimation. (b) Phase error estimation.

one signal impinging on the array. The direction of sig-
nal is θ = 12.9◦, and we know a priori that θ is in the
range [θ0 − δθ , θ0 + δθ ] with θ0 = 9◦ and δθ = 8◦. In addi-
tion, we set SNR = 15 dB and L = 500, and measure the
root-mean-square error (RMSE) of DOA and phase error
estimates versus the standard deviation of phase error (i.e.,
σφ). For comparison purpose, the WF method in [20], the
subspace method in [26], the array interpolation method
in [16], and the eigenstructure methods in [29] and [30]
will be carried out and then compared with the proposed
one, and the CRBs will also be considered as a benchmark.
As aforementioned in Remark 2, in this case, our method
provides a closed-form solution to the unknown DOA and
phase error.

The resulting curves are presented in Fig. 3, from which
one can clearly see that the proposed method performs bet-
ter than the WF method, the subspace method in [26], and
the eigenstructure method in [29]. Moreover, Fig. 3 shows
that the performance of our approach is nearly independent
of the standard deviation of phase error. In addition, we
can see that the resulting RMSEs of the array interpolation
method in [16] and the eigenstructure method in [30] are
close to the CRBs and lower than those of the proposed
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Fig. 4. Array configuration.

TABLE I
Element Positions of a Planar Array

one. Nevertheless, the method in [16] requires several cali-
bration sources with known directions, which is difficult to
deploy in practical engineering. For the approach in [30], it
is only suitable for ULAs and cannot be applied to arrays
with other geometries as shown in the following.

B. 2-D Planar Array With One Calibrated Sensor

To show that the proposed method is applicable to an
array with arbitrary geometry, we now consider a planar ar-
ray with N = 7 omnidirectional sensors, as shown in Fig. 4.
The element locations are specified in Table I. More specif-
ically, the first element that locates at origin is taken as
the reference one, and the sixth (i.e., c = 6) element has
been calibrated. Considering one signal that impinges on
the array from θ = 26◦, we have known that the real DOA
is located in the range [θ0 − δθ , θ0 + δθ ] with θ0 = 24◦

and δθ = 8◦. Unless otherwise specified, we set σφ = 10◦,
SNR = 15 dB, and L = 400. In this case, a constrained LS
problem [see (38)] can be formulated in our method, and
the CCP approach will be used to find the ultimate solution.
In addition, the WF method in [20], the subspace method
in [26], the array interpolation method in [16], and the two
optimization approaches (i.e., GSVD and SDR) in [1] will
also be carried out for comparison.

Before presenting the performance of DOA and phase
error estimation, we first test the convergence of the CCP
approach. To do so, we follow the analysis in Section III-D
and define

Jk � vT
k B + vk − 2(vT

k B − + dTW)vk (56)

�k � Jk − Jk+1. (57)

Clearly, Jk is the resulting cost value of problem (51) after
carrying out the kth step of CCP process. �k denotes the

TABLE II
Parameter Comparison of One Realization of Our Method

Fig. 5. Curve of Jk versus the iteration step.

Fig. 6. Curve of �k versus the iteration step.

cost difference of the kth iteration and the (k + 1)th itera-
tion, and is expected to be small enough if CCP converges.
Following the parameter setting in Table II, we carry out
the CCP approach in Algorithm 1 and depict the resulting
curves of Jk and �k versus the iteration step k in Figs. 5
and 6, respectively. As expected, the cost value Jk mono-
tone decreases with iteration. Moreover, one can see that
�k becomes lower than 10−4 and stays nearly unchanged
after carrying out the third iteration step. This shows that the
CCP approach converges with only a few iteration steps. In
fact, the behavior of �k is similar to those of the estimation
accuracies of DOA and phase errors. To see this point clear,
we denote by Dk(θ) and Dk(φ) the estimation deviation of
DOA and the average estimation deviation of phase errors
at the kth iteration step, respectively. The curves of Dk(θ)
and Dk(φ) versus the iteration step are depicted in Figs. 7
and 8, respectively. One can see that both Dk(θ) and Dk(φ)
decrease with iteration before convergence. The resulting
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Fig. 7. Curve of Dk(θ) versus the iteration step.

Fig. 8. Curve of Dk(φ) versus the iteration step.

estimations of DOA and phase errors have been listed in
Table II. We can see that the estimated values are close to
the real ones. The GSVD approach in [1] obtains similar
results in this realization. For the SDR approach in [1], a
good performance may not be always guaranteed, as we
presented more specifically in the following.

1) Estimation Performance Versus the Standard Devia-
tion of Phase Error: In this part, the performance in terms
of the RMSEs versus the standard deviation of phase error
(i.e., σφ) is studied. We vary σφ from 5◦ to 35◦ and de-
pict the RMSEs of different methods in Fig. 9. It can be
seen that the WF method, the subspace method in [26],
and the SDR approach in [1] perform worse than those of
our method and the GSVD approach in [1]. Although the
array interpolation method in [16] performs better than the
proposed one especially when σφ is greater than 25◦, it
requires additional sources with known directions to com-
plete the calibration. Observe from Fig. 9 that the curves of
our CCP method and the GSVD method are almost iden-
tical. In fact, the GSVD algorithm performs slightly better
than the proposed algorithm for the current simulation set-
tings. This is because that the performance of our method
may be somewhat affected by the iteration number and/or
termination criterion. Meanwhile, we can see that all the

Fig. 9. RMSEs of estimates versus standard deviation of phase error.
(a) DOA estimation. (b) Phase error estimation.

methods tested degrade as σφ increases. For our method,
the possible reason of this behavior may be that the larger
σφ is, the less number of equations (37) can be developed,
and then the resulting performance may degrade. In addi-
tion, it should be pointed out that the size of variable in the
LS problem also influences the ultimate accuracy. Never-
theless, we should emphasize that the above behavior is not
universal applicable (see Fig. 3 for counterexample), and
the performance trend (as σφ increases) of the proposed
method depends upon circumstances.

2) Estimation Performance Versus SNR: We now test
the estimation performance of the proposed method un-
der different SNR settings. Fig. 10 illustrates the resulting
curves of RMSEs. It can be seen that the proposed method
performs better than the WF method, the subspace method
in [26], and the SDR approach in [1]. Moreover, the su-
periority of the proposed method becomes more obvious
in the high SNR scenario, and our algorithm outperforms
the array interpolation method in [16] when SNR is greater
than 10 dB. In addition, the proposed CCP-based method
performs almost the same as the GSVD method, although
the latter shows negligible improvements after zooming in
the results.
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Fig. 10. RMSEs of estimates versus SNR. (a) DOA estimation.
(b) Phase error estimation.

3) Estimation Performance Versus Number of Snap-
shots: In this example, we study the performance versus
the number of training snapshots. Simulation results are
displayed in Fig. 11, from which the strengths of the pro-
posed method can be well verified. The GSVD method may
obtain somewhat lower RMSEs than those of the proposed
CCP-based method, and the resulting curves of these two
methods overlap in general.

4) Estimation Performance Versus DOA Perturbation:
To further explore the performance of the proposed method,
we investigate the effect of the perturbation of DOA esti-
mation [i.e., δθ in (24)]. To this end, we vary δθ from 2◦ to
20◦. The resultant RMSEs of DOA and phase error estima-
tion are displayed in Fig. 12. It is seen that the proposed
approach is quite robust against the DOA perturbation, and
the RMSEs are nearly not affected by δθ . Note that the pro-
posed method and the GSVD method outperform other ap-
proaches tested. In addition, the GSVD approach behaves
slightly better than the proposed one, and the superiority
is minor. As aforementioned, the possible reason is that
our method may be somewhat affected by iteration number
and/or termination criterion.

Fig. 11. RMSEs of estimates versus the number of snapshots. (a) DOA
estimation. (b) Phase error estimation.

TABLE III
Parameter Comparison of One Realization of Our Method Using a

Fully Uncalibrated Array

C. 2-D Planar Array With Fully Uncalibrated Sensors

To further show the wide applicability of the proposed
algorithm, we next consider a 2-D planar array with fully
uncalibrated sensors. The array geometry follows the pre-
ceding example, see Table I and Fig. 4. Different from
the previous two cases, all the sensors are uncalibrated in
this example. The real orientation of calibration source is
θ = 26◦, and we know a priori that the DOA is located in
the range [θ0 − δθ , θ0 + δθ ] with θ0 = 24◦ and δθ = 8◦. In
this case, we set σφ = 30◦, SNR = 15 dB, and L = 400.
Table III specifies the real phase error values in one real-
ization. Since there is no such calibrated sensor available
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Fig. 12. RMSEs of estimates versus DOA perturbation δθ . (a) DOA
estimation. (b) Phase error estimation.

in the above scenario, we follow the strategy presented in
Remark 3 and carry out the WF algorithm in [20] to obtain
a rough estimation of DOA and phase error, see the results
in Table III. Note from Table III that the estimation of φ7

by WF method is 2.2330◦, which has the less phase error
estimation deviation (from the presumed value) among all
the phase error estimations. On this basis, we select the
seventh sensor as the calibrated one (i.e., set c = 7 and
φc = 2.2330◦), and carry out our method to re-estimate the
DOA and phase error. Table III summarizes the ultimate
estimations of the proposed method. One can see that our
estimates (including DOA and phase error) are closer to the
real values than those of the WF algorithm in [20].

To further investigate the performance of our method for
a fully uncalibrated array, we vary σφ from 5◦ to 35◦ and
carry out Monte Carlo simulation by taking the realization
number as 1000. Fig. 13 depicts the resulting RMSEs of
DOA and phase error for the WF method in [20] and the
proposed one. We can see that our method performs better
than the WF algorithm, although the resulting RMSEs have
been increased when compared to the results in Fig. 9,
where a calibrated sensor is assumed. Therefore, for a fully
calibrated array, the proposed algorithm also works well
after simple modifications.

Fig. 13. RMSEs of estimates versus standard deviation of phase error
using fully uncalibrated sensors. (a) DOA estimation. (b) Phase error

estimation.

As we have pointed out earlier, the proposed method
is failed if there exists mutual coupling between sensor
elements. We next take mutual coupling error into consid-
eration and explore the performance of our method in this
scenario by varying σφ from 5◦ to 35◦. More specifically,
the mutual coupling matrix C is complex symmetry with
unit elements on diagonal. The amplitudes of other entries
of C are fixed as −15 dB, and their phases are distributed
uniformly in the range [0, 2π). The resulting RMSEs of
DOA and phase error are shown with blue dashed lines in
Fig. 13, from which we find that the performance of the
proposed method has been seriously degraded compared to
the case when the mutual coupling is absent. This coincides
with the theoretical prediction of Remark 1.

VI. CONCLUSION

We have presented a novel strategy to simultaneously
estimate the DOA of a source signal and phase error of a
partly calibrated array with arbitrary geometrical configu-
ration. We add the snapshot data of two different sensor
elements together and then extract the information associ-
ated with the DOA and phase errors by carrying out SVD
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procedure. In such a manner, a series of linear equations
with respect to the unknown DOA and phase error are fur-
ther established. On this basis, it has been shown that the
problem of jointly estimating DOA and phase error is equiv-
alent to an LS problem with a quadratic equality constraint.
To solve this LS problem (so that the DOA and phase error
can be obtained), the CCP approach has been employed.
Different from the conventional algorithms that are limited
to specific array geometries, the proposed one is suitable
for arrays with arbitrary geometries. More importantly, the
devised method only requires one extra calibrated sensor,
which is not necessarily adjacently located with the refer-
ence one. After simple modifications, our algorithm also
works for the fully uncalibrated arrays. Several represen-
tative experiments have been carried out in this paper and
both the effectiveness and the superiority of the proposed
method have been well validated. As a future study, we
may consider the DOA estimation of multiple sources in the
presence of mutual coupling and/or array shape mismatch.
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