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Abstract—This paper proposes a probabilistically robust joint
transmit code and receive filter design approach for extended
targets detection. The goal is to maximize the probability that
the radar output signal-to-interference-pulse-noise ratio exceeds
a given threshold, under the target impulse response with
a complex Gaussian distribution. By restricting the transmit
waveform to discrete phase codes, we construct a joint transmit-
receive vector with respect to the transmit code and receive
filter. Based on the joint vector, the probabilistically robust joint
design problem is reformulated as a Mixed-Integer Programming
(MIP) problem. Subsequently, we linearize the nonlinear mixed-
integer constraint using a linearization technique and derive
an approximate analytical expression for the intractable prob-
abilistic objective function. Finally, the MIP problem is solved
using the bisection method, yielding high quality (sub-optimal)
solutions. Numerical experiments are presented to demonstrate
the effectiveness and superiority of the proposed method in
extended targets detection.

Index Terms—Radar waveform design, receive filter, extended
targets detection, probabilistically robust optimization, mixed-
integer programming.

I. INTRODUCTION

TARGET detection is a critical requirement for radar sys-
tems, and the Signal-to-Interference-pulse-Noise Ratio

(SINR) of the echo directly affects the detection probability
[1]–[3]. To enhance radar detection performance in different
environments, it is advantageous to leverage the degrees of
freedom available in both the transmitter and receiver. This
allows for flexible design of the Transmit Waveform (TW) and
Receive Filter (RF), resulting in an improved output SINR of
the radar [4], [5].

Over the past few decades, there has been extensive re-
search on the joint design problem of TW and RF in various
scenarios. In the presence of signal-dependent interference
(clutter) scenarios, an Alternating Iterative Optimization (AIO)
technique-based method was proposed in [6] to jointly design
the robust TW and RF. Moreover, the AIO technique has also
been widely used in other studies to obtain local optimal
solutions for the problem of joint design of TW and RF,
including multiple-input multiple-output space-time adaptive
processing systems [7], dual-function radar-communication
systems [8], [9], and so on [10]–[16]. Note that the AIO
technique optimizes only a subset of variables in each it-
eration. This characteristic carries the risk of converging
to a local optimum and may not yield high quality (sub-
optimal) solutions. Additionally, it is worth mentioning that

the aforementioned methods [6]–[16] primarily investigate the
joint design problem of TW and RF for point targets.

With the improvement of radar range resolution, extended
targets have become commonplace in practical radar detection.
In contrast to point targets, extended targets occupy multiple
range bins, resulting in target echoes that are the convolution of
the Target Impulse Response (TIR) and TW [17], [18]. Con-
sequently, traditional processing methods designed for point
targets may not be the best choices for extended targets. Over
the past decades, numerous techniques have been developed
to address the design of TW and RF specifically for extended
targets detection [19]–[27]. Some studies have focused on
designing TW and RF under deterministic TIR assumptions
[18]–[21]. For example, the authors of [19] generalized the
optimal TW to accommodate the extended targets detection.
In [20], the AIO technique was employed to jointly optimize
the TW and RF, with the aim of maximizing the mathematical
expectation of the output SINR. Nevertheless, it is crucial to
highlight that these methods require precise knowledge of the
TIR information for extended targets.

In practice, acquiring precise information about the TIR
before detection is impractical due to its high sensitivity
to line-of-sight (LOS) [28]. As a result, the aforementioned
methods [18]–[21] exhibit poor performance in scenarios with
uncertain TIR. To circumvent this difficulty, several studies
have proposed methods for designing robust TW and RF
under uncertain TIR (see [22]–[27]). For instance, in [22], a
worst-case approach was utilized to design the robust TW for
extended targets. The authors of [23] proposed a robust joint
design method for TW and RF in clutter environments, which
used AIO techniques to optimize the TW and RF alternatively.
Notice that these methods [22], [23] model the uncertain TIR
as a compact convex set to optimize TW and RF, and use
the worst-case performance metric as the objective function.
Nevertheless, the worst-case performance metric may be too
conservative and does not adequately capture the distribution
structure of the output SINR.

In general, the TIR is a random vector that follows a
specific distribution, such as complex Gaussian distribution.
Accordingly, several studies have investigated the problem
of designing TW and RF when the TIR follows a com-
plex Gaussian distribution (see [24]–[27]). Xu et al. [26]
proposed a probabilistically robust TW design method for
extended targets detection. Specifically, the probabilistically
robust method aims to optimize the TW by maximizing the
probability that the output SINR exceeds a given threshold,
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and its performance is evaluated using the Probabilistically
Robust Detection (PRD) metric. For the joint design problem
of TW and RF, Xu et al. [27] investigated the design of
radar waveform-filter for extended targets based on the PRD
criterion, and utilized the Block Coordinate Descent (BCD)
technique to optimize TW and RF alternately. However, these
methods [26], [27] do not provide an explicit analytical expres-
sion for the Probabilistic Objective Function (POF). Instead,
they rely on geometric approximation and limit interpretation
techniques to approximate the POF. More importantly, these
methods only focus on the continuous phase for the TW.

From a practical point of view, the TW should consist of
discrete phase codes [29]–[31]. In [30], a constant modulus
discrete phase radar waveform design method was proposed
to optimize radar detection performance. In [31], a discrete
phase-coded sequence design method was introduced, aiming
to minimize the sidelobe level of the ambiguity function
in coherent waveform-agile radar systems. However, these
discrete-phase waveform design methods incorporate approx-
imate steps, leading to the inability to obtain high-quality
solutions from a given discrete-phase alphabet.

In this paper, we address the problem of probabilistically
robust joint design of transmit code (TC) and RF for extended
targets detection. The goal is to maximize the probability that
the radar output SINR exceeds a given threshold. By restricting
the TW to discrete phase codes, we propose a Mixed-Integer
Programming (MIP) approach to solve the probabilistically
robust joint design problem and find high quality TC and
RF. Numerical experiment results demonstrate the effective-
ness and superiority of the proposed method. To summarize,
Tab. I succinctly outlines the key features of this paper and
the research work related to extended targets detection. The
research contributions of our work are summarized as follows:

1) Probabilistically robust joint TC and RF design:
Considering the TIR with a complex Gaussian distribution
and the PRD metric in [26], [27], we address the problem of
probabilistically robust joint design for TC and RF. Different
from the studies in [27], we consider a finite number of bits in
the digital waveform generators and restrict the TW to discrete
phase codes.

2) An MIP approach for the joint design of TC and RF:
We construct a transmit-receive joint vector with respect to
the TC and the RF. The joint vector is then utilized to
reformulate the probabilistically robust design problem as an
MIP problem. In contrast to the AIO [23] and BCD [27]
techniques, the proposed MIP approach optimizes the TC and
RF simultaneously, resulting in high quality solutions.

3) A tractable approximate expression for the probabilistic
objective function: For the intractable POF, we employ relax-
ation processing techniques to derive a tractable approximate
expression. This approach differs from that presented in pre-
vious studies [26], [27], which utilize geometric interpretation
and limit interpretation techniques to approximate the POF.

The rest of the paper is organized as follows. Section
II presents the signal model and formulates the problem of
probabilistically robust joint design for TC and RF. In Section
III, we propose an MIP approach for solving this problem.
Numerical experiments are used to validate the performance
of the proposed method in Section IV. Finally, Section V
concludes the paper.

Notations: In this paper, (·)T and (·)† denote the transpose
and the conjugate transpose of matrix or vector, respectively.
We use boldface to represent vectors a (lower case) and
matrices A (upper case), respectively. a (p) represents the p-
th element of the vector a, and A (p, q) denotes the element
at the p-th row and q-th column of the matrix A. vec (A)

TABLE I
A BRIEFLY SUMMARY OF THE EXTENDED TARGETS DETECTION.

Ref.
no.

Optimization
variable

Optimization
criteria

Constant
modulus

constraint

Discrete
phase

constraint
TIR model Optimization

algorithm Contribution Drawbacks

[20] TW and RF
Maximize

output SINR × × Deterministic
model AIO

First joint
optimization of TW

and RF.

Sensitive to TIR error,
TW is not discrete

phase code.

[23] TW and RF
Maximize
worst-case

performance

√
× Compact

convex set AIO
Proposed robust

joint TW and RF
design.

The probability
distribution of the TIR
error is not considered,

the AIO algorithm
tends to fall into local
optimum, TW is not
discrete phase code.

[26] TW Maximize
POF

√
×

Complex
Gaussian

distribution

Dinkelbach’s
algorithm

Proposed PRD
criterion.

No optimized filter, TW
is not discrete phase

code.

[27] TW and RF Maximize
POF

√
×

Complex
Gaussian

distribution
BCD

Using the PRD
criterion to jointly
optimize TW and

RF.

The BCD algorithm
tends to fall into local
optimum, TW is not
discrete phase code.

Proposed TW and RF Maximize
POF

√ √ Complex
Gaussian

distribution
MIP

Using MIP to
optimize TW and

RF simultaneously.

Requires higher
computational costs.
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(a) (b)
Fig. 1. The architecture and detection mechanisms of the considered extended targets. (a) The return from the extended targets scattering center are projected
on the LOS. (b) Transmit-receive processing procedure.

represents the vectorization of the matrix A. The modulus of
the complex number a is denoted by the |a|. ∥a∥ denotes the
Euclidean norm of vector a. 1N denotes N × 1 dimensional
vector with all elements of one, and IN represents the N×N
identity matrix. ⊗ represents Kronecker product, ⊕ is the
convolution operator. a ⪯ b and a ⪰ b are defined as
componentwise inequality between vectors a and b. This
means that a (p) ≤ b (p) and a (p) ≥ b (p) for every p index.
a ∼ CN (0,Ξ) indicates that the random vector a follows a
Gaussian distribution with mean zero and variance Ξ. RN×M

and CN×M refer to a real and complex valued matrix of size
N×M , respectively. The expectation of the random variable x
is denoted as E[x], while its standard deviation is represented
by D[x].

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Let us consider a high-resolution radar that transmits the N -
dimensional fast-time signal s = [s(0), ..., s(N − 1)]

T ∈ CN .
For the given extended target with L lengths of occupied range
cells1, let t = [t(0), ..., t(L− 1)]

T ∈ CL denote the discrete
samples of the TIR2. The extended targets architecture and
detection mechanisms are shown in Fig. 1. In the presence of
clutter, after the transmit signal is reflected by the extended
target, the received discrete-time baseband signal captured by
the radar can be expressed as:

y(i) =

N−1∑
k=0

[t(i− k) + c(i− k)]s(k) + v(i)

= [t(i) + c(i)]⊕ s(i) + v(i)

(1)

1The parameter L can be chosen based on the maximum target length and
the radar range resolution.

2The TIR characterizes the scattering behavior of the target and is deter-
mined by the target physical parameters and the radar operating parameters
[32].

where i is the discrete time index, t(i) = 0 unless i ∈
{0, ..., L − 1}, and v(i) is the complex additive white noise
signal. c(i) denotes the Clutter Impulse Response (CIR).

Considering N transmit codes, we collect all received
signals y(i) from the extended target into a vector y =
[y(0), ..., y(M − 1)]

T ∈ CM . This can be expressed as:

y = Ts+Cs+ v (2)

where M = N + L − 1 denotes the number of discrete time
observations, v = [v(0), ..., v(M − 1)]

T ∈ CM is the noise
vector. We assume that v follows a complex circular white
Gaussian vector with zero mean and covariance matrix σ2

nI ,
i.e., v ∼ CN

(
0, σ2

nI
)
, σ2

n represents the variance of each
filtered noise sample. T denotes the TIR matrix, defined as:

T =

L−1∑
i=0

t(i)J i (3)

and C represents the CIR matrix, defined as:

C =

M−1∑
i=−N+1

c(i)J i (4)

where J i ∈ RM×N stands for the shift matrix, defined by

J i (k1, k2) =

{
1, if k1 − k2 = i

0, if k1 − k2 ̸= i

k1 = {1, ...,M} , k2 = {1, ..., N}
(5)

Since the TIR information is not precisely known before
detection, we assume that t follows a complex Gaussian
distribution as t ∼ CN (t0,Gt) (similar assumption can also
be found in [25]–[27]). Here, t0 denotes the prior knowledge
of the TIR, and Gt represents the uncertainty error information
and correlations of the elements in t. In this paper, similar to
[26], we assume that t0 and Gt are known, and they can be
obtained from previous detections or the target database using
cognitive methods [33], [34]. Under this assumption, we define

t = t0 + ε (6)
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where ε denotes the error vector, and it follows a complex
Gaussian distribution as ε ∼ CN (0,Gt). Then, the TIR
matrix can be reformulated as:

T = T 0 + T ε (7)

where T 0 and T ε are respectively defined as:

T 0 =

L−1∑
i=0

t0(i)J i (8)

and

T ε =

L−1∑
i=0

ε(i)J i (9)

B. Problem Formulation

Assuming that the received vector y is filtered through w =
[w(0), ..., w(M − 1)]

T ∈ CM , the output SINR of the filter
can be expressed as:

γ (s,w) =

∣∣w†Ts
∣∣2∣∣∣w†C̃s

∣∣∣2 + σ2
n ∥w∥2

(10)

where C̃ is the expectation information for the CIR matrix, C̃
and σ2

n can be obtained from previous detections [26], [27].
Since the TIR is a complex Gaussian random vector, the out-

put SINR γ (s,w) is also a random variable. In this scenario,
there is no guarantee that the detection performance of the
radar will always remain satisfactory. To ensure the detection
of a target of interest, it is generally desirable for the γ (s,w)
to exceed a given threshold γ0

3. In the stochastic cases, we can
design the TW and RF to maximize the probability achieving
this event. Therefore, the design of the TW and RF should
adhere the following design principle (similar principle as in
[26], [27]):

max
s,w

Pr {γ (s,w) ≥ γ0} (11)

Taking into account a limited number of bits in the digital
waveform generators, we restrict the TW to discrete phase
codes (similar constraint can be found in [29], [30]). This
means that the values of s(n) must belong to a discrete
alphabet set. Mathematically, assuming that B denotes the
number of quantization bits and defining Q = 2B , the TC
must satisfy the following constraint:

s(n) ∈ S (12)

where S =
{
1, ej2π/Q, ..., ej2π(Q−1)/Q

}
is the discrete alpha-

bet.
By combining constraint (12), the probabilistically robust

joint design problem for TC and RF can be formulated as:

max
s,w

Pr {γ(s,w) ≥ γ0} (13a)

s.t. s(n) ∈ S (13b)

∥w∥ ≤ 1/
√
N (13c)

3The SINR threshold γ0 is chosen based on the desired detection probability
P0 for a given false alarm rate Pfa.

In this problem, constraint (13b) ensures that the TC is selected
only from the given discrete alphabet S. Additionally, for ease
of subsequent processing, we add the constraint (13c) to limit
the Euclidean norm of w. It is worth noting that the constant
1/
√
N in constraint (13c) can be assigned any positive number

without impacting the optimal solutions of problem (13). In
the next section, we devise an MIP approach to tackle problem
(13).

III. PROBABILISTICALLY ROBUST JOINT TC AND RF
DESIGN

In this section, we begin by reformulating problem (13)
as an MIP problem. To solve this problem, we proceed to
linearize the nonlinear mixed-integer constraint and convert
it into a set of linear constraints. Additionally, we provide a
tractable approximate expression for the POF. Finally, the re-
formulated MIP problem is solved using the bisection method,
resulting in high quality TC and RF.

To begin with, we define the vector p to represent the given
discrete alphabet S, given by

p =
[
1, ej2π/Q, ..., ej2π(Q−1)/Q

]T
∈ CQ (14)

Then, by introducing an N × Q binary matrix D to
determine the TC, we can express the TC s as:

s = Dp (15)

Note that the binary matrix D must satisfy the following
constraint:

D1Q = 1N (16)

which ensures that exactly one element of each row in matrix
D is one. In this way, the discrete phase codes constraint (13b)
is satisfied. Now, the design for TC s can be transformed
into the design of binary matrix D, since the vector p is
preassigned.

By combining the constraints (15) and (16), we can refor-
mulate the problem (13) as follows:

max
s,w,D

Pr


∣∣w†Ts

∣∣2∣∣∣w†C̃s
∣∣∣2 + σ2

n ∥w∥2
≥ γ0

 (17a)

s.t. s = Dp (17b)
D1Q = 1N (17c)

∥w∥ ≤ 1/
√
N (17d)

D ∈ {0, 1}N×Q (17e)

Notice that in problem (17), the matrix D is an N ×Q binary
matrix, meaning its elements can only take the values of zero
or one as indicated in (17e). In fact, the problem (17) is an
MIP problem, where some variables (such as matrix D) can
only taken on integer values, while others (such as vector w)
can taken on continuous values. For the above MIP problem, it
can be solved using universal MIP solvers such as GUROBI
[35] and CPLEX [36]. However, problem (17) involves an
intractable expression of the POF. Unlike existing AIO [23]
and BCD [27] techniques, we will propose an MIP approach
to find sub-optimal solutions for problem (17) in this section.
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A. Joint Design of TC and RF Using Mixed-Integer Program-
ming

In this subsection, we construct a transmit–receive joint
vector with respect to the TC and RF. This joint vector is
subsequently utilized to reformulate problem (17) as a new
MIP problem.

By utilizing equation (15) and introducing an identity matrix
IN , the target echo power

∣∣w†Ts
∣∣2 can be rewritten as∣∣w†Ts

∣∣2 =
∣∣w†TINDp

∣∣2 (18a)

=
∣∣w†T

(
pT ⊗ IN

)
vec (D)

∣∣2 (18b)

=
∣∣w†Htvec (D)

∣∣2 (18c)

=
∣∣∣(vec (D)

T ⊗w†
)
vec (Ht)

∣∣∣2 (18d)

=
∣∣∣f †ht

∣∣∣2 (18e)

where

f = vec (D)⊗w ∈ CNQM (19a)

ht = vec (Ht) ∈ CNQM (19b)

Ht = T
(
pT ⊗ IN

)
∈ CM×NQ (19c)

The equations (18b) and (18d) are derived from the properties
of matrix multiplication, i.e., for any matrix A1,A2 and A3,
it holds that vec(A1A2A3) =

(
AT

3 ⊗A1

)
vec (A2).

Similar to equation (18), the clutter power
∣∣∣w†C̃s

∣∣∣2 can be
rewritten as ∣∣∣w†C̃s

∣∣∣2 =
∣∣∣f †hc

∣∣∣2 (20)

where hc = vec (Hc) ∈ CNQM and Hc = C̃
(
pT ⊗ IN

)
∈

CM×NQ. Meanwhile, we observe that the TC s and the RF
w are constructed as the transmit–receive joint vector f . This
implies that s and w can be optimized simultaneously by op-
timizing f , as long as f is ensured to have the decomposition
form of (19a).

By combining the equations (18e) and (20), we can refor-
mulate the output SINR γ as:

γ =

∣∣∣f †ht

∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥w∥2

(21)

As described earlier in equation (7), there is an error T ε

in the TIR matrix T . Based on the definitions of ht, it can
be observed that ht also has a random error vector δ. In this
context, we define

ht = h̄t + δ (22)

where h̄t = vec
(
H̄t

)
and H̄t = T 0

(
pT ⊗ IN

)
.

Similar to the calculation of h̄t, the error vector δ can be
calculated by

δ = vec (Hε) (23)

where Hε = T ε

(
pT ⊗ IN

)
.

For this consideration, the output SINR is reformulated as:

γ =

∣∣∣f † (h̄t + δ
)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥w∥2

(24)

Now, the problem (17) can be recast as:

max
f ,D,w

Pr


∣∣∣f † (h̄t + δ

)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥w∥2

≥ γ0

 (25a)

s.t. f = vec (D)⊗w (25b)
D1Q = 1N (25c)

D ∈ {0, 1}N×Q (25d)
∥f∥ ≤ 1 (25e)

Compared to problem (17), the optimization now focuses on
the variable f rather than s, and the new objective function
is not directly related to s. As a result, the constraint (17b) is
removed, and two new constraints (25b) and (25e) are added.
The constraint (25b) is added to ensure that the values of the
variable f are associated with both D and w. The constraint
(25e) is derived based on the constraints (25b)-(25d) and (17d),
and it is used to restrict the values of f , similar to constraint
(17d). It should be noted that constraint (17d) is also omitted
in problem (25). As a matter of fact, the omitted constraint
(17d) is equivalent to the constraint (25e). If constraints (25b)-
(25e) are satisfied, it ensures that w automatically satisfies
constraint (17d). Hence, the constraint ∥w∥ ≤ 1/

√
N is

implicitly satisfied by the constraints of problem (25) and can
be omitted.

From problem (25), it is evident that the optimal solutions
of the binary matrix D and RF w can be directly obtained
by solving for the transmit-receive joint vector f , which is
different from the existing AIO [23] and BCD [27] techniques.
However, there are two main challenges in solving problem
(25). The first difficulty arises from the nonlinear constraint
(25b). The optimal solutions for the variables f , D, and
w must satisfy this constraint. The second difficulty lies in
the intractable POF (25a). To address these challenges, the
following subsections discuss how to handle the nonlinear
constraint and how to relax the POF into a tractable expression.

Remark 1: Based on equation (9), we know that T ε is
constructed based on the error vector ε, where ε follows a
complex Gaussian distribution ε ∼ CN (0,Gt). Since linear
transformations do not change the probability distribution
characteristics, the error vector δ also follows a complex
Gaussian distribution. We assume that the error vector δ ∼
CN (0,Gδ). In practice applications, we can generate a large
number of error vectors ε using the distribution CN (0,Gt)
and compute δ using equation (23). By collecting a significant
number of samples of δ, we can calculate the covariance
matrix Gδ .

B. Mixed-Integer Constraint Linearization

To address the nonlinear constraint (25b), we first introduce
an important lemma related to MIP problems.

Lemma 1 [37]: For two real variables x1 ∈ R and x2 ∈ R,
where x1 ∈ {0, 1} is a binary variable and x2 ∈ [a, b], the
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nonlinear constraint x = x1x2 can be linearized as:

x ≤ x2 +K (1− x1) (26a)
x ≥ x2 −K (1− x1) (26b)
ax1 ≤ x ≤ bx1 (26c)
a ≤ x2 ≤ b (26d)
x1 ∈ {0, 1} (26e)

where K is a sufficiently large positive number. To facilitate
further discussions, we provide a brief proof of Lemma 1.

Proof: We can observe that the constraint (26a) restricts x
to be less than x2, and the constraint (26b) restricts x to be
greater than x2 when x1 = 1. Moreover, the constraint (26c)
limits the values of x within the interval [a, b]. As a result, if
x1 = 1, x can only take the value x2. On the other hand, it
is not hard to observe that the constraints (26a) and (26b) fail
when x1 = 0, since K is a sufficiently large positive number.
Meanwhile, the constraint (26c) enforces x to be zero. With
these observations, we can conclude that constraint (26) is
equivalent to the constraint x = x1x2.

Next, considering that the nonlinear constraint is expressed
as the Kronecker product of two vectors, we can utilize Lemma
1 to derive the following corollary.

Corollary 1: For the vectors g1 ∈ RN and g2 ∈ RM , where
g1 is a binary vector, i.e., g1 ∈ {0, 1}N , and g2(m) ∈ [a, b],
the nonlinear constraint g = g1 ⊗ g2 can be linearized as

g ⪯ 1N ⊗ g2 +K (1NM − g1 ⊗ 1M ) (27a)
g ⪰ 1N ⊗ g2 −K (1NM − g1 ⊗ 1M ) (27b)
a (g1 ⊗ 1M ) ⪯ g ⪯ b (g1 ⊗ 1M ) (27c)
a1M ⪯ g2 ⪯ b1M (27d)

g1 ∈ {0, 1}N (27e)

where K also is a sufficiently large positive number. The proof
of Corollary 1 follows a similar approach to that of Lemma 1,
and for the sake of brevity, we omit the detailed proof here.

Now, let us address the intractable nonlinear constraint
(25b). Notice that vec (D) is a binary vector that corresponds
to g1, while w is a complex vector that does not directly
correspond to g2 in Corollary 1. However, it is observed
that the real and imaginary parts of w can be considered
independently. For this, the constraint (25b) is written as:

Re {f} = vec (D)⊗ Re {w} (28a)
Im {f} = vec (D)⊗ Im {w} (28b)

Based on the implicit constraint ∥w∥ ≤ 1/
√
N in problem

(25), it is clear that both the real and imaginary parts of
w must be in the interval [−1, 1]. Consequently, we assign
a = −1, b = 1 in the constraints (27c) and (27d). Then,
constraints (28a) and (28b) (i.e., constraint (25b)) can be
linearized individually using Corollary 1, and problem (25)
can be recast into problem (29) (shown at the top of the next
page).

Compared to problem (25), in problem (29), the nonlinear
constraint (25b) is now transformed into a set of tractable
linear constraints (29b)-(29g). It is worth noting that there are
no separate constraints imposed on the real and imaginary

parts of w in problem (29), similar to constraint (27d). This
is because the fact that the implicit constraint ∥w∥ ≤ 1/

√
N

already imposes limitations on the feasible range of w. For
this reason, there is no need to introduce additional constraints
to restrict the real and imaginary parts of w in problem (29).
Finally, we set K = 2 in problem (29) (This will be explained
in Remark 2).

Remark 2: Observing constraints (26a) and (26b), we know
that the value of x must lie within the interval [a, b]. Therefore,
for any ∀x2 ∈ [a, b], the value of K need to satisfy the
following inequalities:

x2 −K ≤ a (30a)
x2 +K ≥ b (30b)

Based on (30), it is not hard to derive that K must take a
positive number satisfying the inequality K ≥ b − a. This
conclusion can be applied to problem (29), so we set K = 2.

C. A Tractable Approximate Expression for the Probabilistic
Objective Function

To obtain a tractable analytical expression, it is necessary
to perform relaxation processing for the POF (29a). The
relaxation starts with the inequality in the objective function
(29a), and it is easy to observe the following inequality:∣∣∣f † (h̄t + δ

)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥w∥2

≥

∣∣∣f † (h̄t + δ
)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n/N

(31)

The reason for the inequality is attributed to the implicit con-
straint ∥w∥ ≤ 1/

√
N in problem (29). Utilizing the properties

of probability, we can obtain the following inequality:

Pr

{ ∣∣f† (h̄t + δ
)∣∣2∣∣f†hc

∣∣2 + σ2
n ∥w∥2

≥ γ0

}
≥ Pr

{ ∣∣f† (h̄t + δ
)∣∣2∣∣f†hc

∣∣2 + σ2
n/N

≥ γ0

}
(32)

Now, the problem (29) can be further relaxed as:

max
f ,D,w

Pr


∣∣∣f † (h̄t + δ

)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n/N

≥ γ0

 (33a)

s.t. (29b) − (29j) (33b)

To solve problem (33), we introduce the following problem:

max
f ,D,w

Pr


∣∣∣f † (h̄t + δ

)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥f∥

2
/N

≥ γ0

 (34a)

s.t. (29b) − (29j) (34b)

In fact, both problems are equivalent, i.e., they share the same
optimal solutions. The proof can be found in Appendix A of
[38].

Notice that hch
†
c + σ2

n/N is a positive definite matrix and
can be decomposed as LL† using the Cholesky decomposi-
tion. Then, the following equation holds true.

Pr

{ ∣∣f† (h̄t + δ
)∣∣2∣∣f†hc

∣∣2 + σ2
n ∥f∥2 /N

≥ γ0

}
= Pr

{∣∣f† (h̄t + δ
)∣∣2∥∥f†L

∥∥2 ≥ γ0

}
(35)
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max
f ,D,w

Pr


∣∣∣f † (h̄t + δ

)∣∣∣2∣∣∣f †hc

∣∣∣2 + σ2
n ∥w∥2

≥ γ0

 (29a)

s.t. Re {f} ⪯ 1NQ ⊗ Re {w}+ 2 (1NQM − vec (D)⊗ 1M ) (29b)
Re {f} ⪰ 1NQ ⊗ Re {w} − 2 (1NQM − vec (D)⊗ 1M ) (29c)
vec (D)⊗ 1M ⪯ Re {f} ⪯ vec (D)⊗ 1M (29d)
Im {f} ⪯ 1NQ ⊗ Im {w}+ 2 (1NQM − vec (D)⊗ 1M ) (29e)
Im {f} ⪰ 1NQ ⊗ Im {w} − 2 (1NQM − vec (D)⊗ 1M ) (29f)
vec (D)⊗ 1M ⪯ Im {f} ⪯ vec (D)⊗ 1M (29g)
D1Q = 1N (29h)

D ∈ {0, 1}N×Q (29i)
∥f∥ ≤ 1 (29j)

For the right-hand side of equation (35), we observe that

Pr

{∣∣∣f † (h̄t + δ
)∣∣∣2 ≥ γ0

∥∥∥f †L
∥∥∥2} (36a)

= Pr
{∣∣∣f † (h̄t + δ

)∣∣∣ ≥ √
γ0

∥∥∥f †L
∥∥∥} (36b)

≥ Pr
{∣∣∣f †h̄t

∣∣∣− ∣∣∣f †δ
∣∣∣ ≥ √

γ0

∥∥∥f †L
∥∥∥} (36c)

= Pr
{∣∣∣f †δ

∣∣∣ ≤ ∣∣∣f †h̄t

∣∣∣−√
γ0

∥∥∥f †L
∥∥∥} (36d)

= 1− exp

−

(∣∣∣f †h̄t

∣∣∣−√
γ0

∥∥∥f †L
∥∥∥)2

∥∥∥G1/2
δ f

∥∥∥2
 (36e)

where (36b) is relaxed to (36c) due to the properties of
probability and the following inequality:∣∣∣f † (h̄t + δ

)∣∣∣ ≥ ∣∣∣f †h̄t

∣∣∣− ∣∣∣f †δ
∣∣∣ (37)

The inequality (37) is derived from the triangle inequality
theorem. For (36d), since the random variable δ follows
a complex Gaussian distribution, i.e., δ ∼ CN (0,Gδ), it
has been shown in [39] that the real and imaginary parts
of f †δ are real independent identically distributed (i.i.d.)
Gaussian, and the modulus value of the random variable f †δ
further follows a Rayleigh random distribution. Consequently,
based on the Cumulative Distribution Function (CDF) of the
Rayleigh distribution, we can derive the equation (36e).

In formulation (36), we relax the objective function of
problem (34) for a tractable expression (36e). Then, by uti-
lizing the properties of probability and the monotonicity of
the exponential function, the problem (34) can be relaxed as:

max
f ,D,w

∣∣∣f †h̄t

∣∣∣−√
γ0

∥∥∥f †L
∥∥∥∥∥∥G1/2

δ f
∥∥∥ (38a)

s.t. (29b) − (29j) (38b)

Compared to problem (29), the problem (38) effectively tack-
les the intractable POF. Before proceeding further, it should be

noted that problem (38) is equivalent to the following problem:

max
f ,D,w

Re
{
f †h̄t

}
−√

γ0

∥∥∥f †L
∥∥∥∥∥∥G1/2

δ f
∥∥∥ (39a)

s.t. (29b) − (29j) (39b)

Im
{
f †h̄t

}
= 0 (39c)

This is because the objective value of problem (38) is un-
changed when f undergoes an arbitrary phase rotation [40].
This implies that, without affecting the value of the objective
function, we can rotate f †h̄t to a real number by adding
a phase to f . Consequently, we assume that f †h̄t is real,
and add the constraint (39c), transforming problem (38) into
problem (39).

However, it is observed that the objective function of
problem (39) is non-convex, and the problem (39) cannot be
solved optimally in polynomial time. To solve problem (39),
we reformulate it as:

max
f ,D,w

τ (40a)

s.t. τ
∥∥∥G1/2

δ f
∥∥∥+

√
γ0

∥∥∥f †L
∥∥∥ ≤ Re

{
f †h̄t

}
(40b)

(29b) − (29j) (40c)

Im
{
f †h̄t

}
= 0 (40d)

It can be found that, for a fixed τ , the following MIP
problem (41) is solvable in polynomial time.

find f ,D,w (41a)

s.t. τ
∥∥∥G1/2

δ f
∥∥∥+

√
γ0

∥∥∥f †L
∥∥∥ ≤ Re

{
f †h̄t

}
(41b)

(29b) − (29j) (41c)

Im
{
f †h̄t

}
= 0 (41d)

Evidently, if τ has a definite range of values, such as
τ ∈ [τmin, τmax] (it will be discussed subsequently), then
the solutions to problem (39) can be obtained by using the
bisection method [41]. With this observation, assuming that
the variable τ has a definite range of values, the procedure for
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finding the optimal solutions of problem (39) is summarized in
Algorithm 1. Once the optimal binary matrix D⋆ is obtained,
the optimal TC can be calculated by equation (15).

Last but not least, our proposed approach, while not capable
of obtaining globally optimal solutions, is shown to provide
superior solutions compared to the existing AIO [23] and
BCD [27] techniques (This is corroborated by our simulation
results). The main reason for this is that our proposed MIP
method optimizes all variables simultaneously.

Algorithm 1 Bisection search for finding optimal solutions to
problem (39).
Input: τmin, τmax and set a solution accuracy ϵ > 0.
Output: The optimal solutions f⋆, D⋆ and w⋆.
1: repeat
2: τ = (τmin + τmax) /2;
3: If the problem (41) is feasible, update τmin = τ , f⋆ = f ,

D⋆ = D and w⋆ = w; otherwise update τmax = τ .
4: until τmax − τmin < ϵ

Remark 3: Recalling equation (35), we can easily obtain the
following inequality:

0 ≤ Pr

{∣∣∣f † (h̄t + δ
)∣∣∣2 ≥ γ0

∥∥∥f †L
∥∥∥2} ≤ 1 (42)

Based on the above inequality and referring to formulation
(36), it is straightforward to derive the following inequality:

0 ≤ exp
(
−τ2

)
≤ 1. (43)

The monotonicity of the exponential function implies that
τ ∈ [0,+∞), indicating that there is no strict upper bound
for τ . In practical applications, it is evident that setting τ
to an excessively large number is unnecessary to achieve a
probability value extremely close to 1. Thus, in this paper, we
set τmax = 10, which yields a value of exp

(
−τ2

)
that is very

close to 1.
Remark 4: The research content in this paper can also be

addressed using the traversal method, specifically by fixing
TC and solving RF. However, the traversal method may not
be highly practical as it entails multiple rounds of two-step
optimization solutions, and the computational cost is very high
when the discrete sequence is long. The proposed method
establishes a new joint solution framework that avoids multiple
rounds of two-step solution. This provides a new perspective
and solution approach for the joint optimization problem of
discrete and continuous variables, with potential applicability
to complex scenarios.

IV. NUMERICAL RESULTS

In this section, we present numerical experiments to evaluate
the performance of the proposed method. For comparison
purpose, the robust joint design method (constant modulus
code model) in [23] is tested4.

4It should be noted that the BCD technique utilized in [27] is essentially
an alternating optimization method (similar to [23]), which does not enhance
the output SINR. Instead, the method in [27] only changes the distribution
structure of the output SINR. Therefore, we solely simulated the method in
[23].

Unless otherwise specified, we consider a radar system in
S-band with operating frequency f0 = 3 GHz, and rectangular
subpulse duration of 10 ns (corresponding to 1.5 m range
resolution). The extended target is the typical fighter with 15
meters long, occupying L = 10 range cells. For the TC, N = 7
and B = 1 are chosen, so Q = 2 and M = 16. The covariance
matrix Gt = σ2

εI of the error ε is set. The covariance matrix
Gδ of δ is calculated by generating the 5000 TIRs (Monte
Carlo trials) from CN (0,Gt). The TIR is defined as

t0 (i) = σ2
t (cos (0.6πi− 1.8π) + 1) e−|i−2|+jπ(i−4)/6 (44)

and the CIR information is defined as

C̃ (k1, k2) = σ2
c

(
1.2e−(k1−k2)

2

+ 0.2ej2(k1−k2)
)

(45)

where σ2
t and σ2

c denote the power of TIR and CIR, re-
spectively, with 10 dB and 30 dB. For problem (41), we set
the desired SINR γ0 = 15 dB to achieve a relatively high
detection probability. Moreover, regarding to the stop criterion
of the Algorithm 1, we set ϵ = 10−2 and τ ∈ [0, 10]. In our
simulations, the proposed problem (41) is solved by the high
performance MIP solver GUROBI [35], and all the numerical
simulations are performed based on MATLAB 2022b on a PC
with CPU Intel(R) Xeon(R) Gold 6246 CPU @ 3.30 GHz 3.29
GHz (two processors) and 256 GB RAM.

A. The Output SINR under Different Nosie Power

In this subsection, we evaluate the performance of radar
output SINR for different noise powers. Specifically, we
consider setting the noise power σ2

n to -20 dB, -10 dB and
0 dB respectively, while setting the error power σ2

ε = 0 dB.
Fig. 2 shows the radar output SINR of the different methods

for different noise powers. The results are obtained by con-
ducting 5000 Monte Carlo trials, where TIRs are randomly
generated from CN (0,Gt). The optimal solutions for the TC
and RF, obtained through the proposed method, are given in
Tab. II and Tab. III, respectively. Here, we present the output
SINR of the robust method [23] for continuous phase and
1-bit quantization, respectively. It can be observed that the
proposed method achieves a significant improvement in output
SINR compared to the robust method. More specifically, our
method exhibits an approximately 10 dB enhancement in
the output SINR when compared to the continuous phase
case. The substantial improvement in output SINR can be
attributed to two key factors. Firstly, our proposed method
directly solves for the joint vector of the TC and RF, resulting
in high quality solutions for both components. In contrast,
the robust method employs an AIO technique that optimizes
only a subset of variables in each iteration, which often
leads to convergence to a local optimum without achieving
high performance solutions. Secondly, our proposed method
enforces the constraint that the TC must be selected from
a given discrete alphabet. This ensures that the solved TC
and RF are sub-optimal solutions for the given number of
quantization bits. In contrast, the robust method, when using
the constant modulus constraint, does not restrict the TC to
be chosen from the given discrete alphabet. As a result, we
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(a) (b) (c)

Fig. 2. The radar output SINR for different noise powers. (a) σ2
n = −20 dB. (b) σ2

n = −10 dB. (c) σ2
n = 0 dB.

observe a degradation in the output SINR when operating with
1-bit quantization.

Moreover, the distribution histogram of 5000 Monte Carlo
SINRs for different noise powers are shown in Fig. 3. The
mean E [γ] and the standard deviation D [γ] of the output
SINR are given in Tab. IV. It can be seen that proposed
method achieves a significantly smaller standard deviation
while improving the output SINR, resulting in a much higher
value of E[γ]−γ0

D[γ] . These observations align with the concept
of probabilistically robust TW design presented in [26], which
enhances detection performance by reducing the standard
deviation of the output SINR. This indicates that the structure
of the output SINR distribution obtained from our proposed
method corresponds to the PRD metric, providing evidence
for probabilistic robustness of the proposed method.

TABLE II
PARAMETERS OF THE TC BY THE PROPOSED METHOD FOR DIFFERENT

NOISE POWERS

σ2
n

n
0 1 2 3 4 5 6

0 dB ejπ ejπ ejπ ejπ ejπ ej0 ej0

−10 dB ejπ ejπ ejπ ej0 ej0 ejπ ejπ

−20 dB ejπ ejπ ej0 ej0 ejπ ejπ ej0

TABLE III
PARAMETERS OF THE RF BY THE PROPOSED METHOD FOR DIFFERENT

NOISE POWERS

m

σ2
n 0 dB −10 dB −20 dB

0 0.0751e−j0.3108 0.0378e+j0.1420 0.0219e+j1.5567

1 0.0648e+j1.0600 0.0941e+j1.8137 0.1953e+j2.0859

2 0.0992e+j2.3100 0.1673e+j2.2907 0.1963e+j2.3233

3 0.0980e+j2.5474 0.1424e+j2.4637 0.0583e−j1.4812

4 0.0899e+j2.5447 0.0475e−j1.9633 0.0861e−j0.8163

5 0.1882e+j2.4599 0.1395e−j0.7829 0.0227e+j0.7835

6 0.0524e−j3.0996 0.0322e+j0.4519 0.0707e+j2.3374

7 0.1488e−j0.7437 0.0660e+j2.3029 0.0163e−j2.2766

8 0.1179e−j0.5064 0.0356e+j2.8855 0.0651e−j0.6812

9 0.0361e−j0.9823 0.0404e−j0.9955 0.0159e−j0.7400

10 0.0223e−j1.1266 0.0384e−j0.6455 0.0067e−j2.6661

11 0.0124e+j2.5803 0.0034e−j0.9751 0.0454e−j1.0364

12 0.0255e+j0.3859 0.0344e−j0.4880 0.0273e+j2.1898

13 0.0282e+j0.4567 0.0358e−j0.9218 0.0193e+j1.7762

14 0.0451e−j0.3670 0.0268e−j0.6150 0.0589e−j0.7242

15 0.0340e−j1.1037 0.0071e+j2.2355 0.0978e−j1.0060

(a) (b) (c)

Fig. 3. The distribution of radar output SINR for different noise powers. (a) σ2
n = −20 dB. (b) σ2

n = −10 dB. (c) σ2
n = 0 dB.
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TABLE IV
STATISTICAL CHARACTERISTICS COMPARISON OF DIFFERENT METHODS AT DIFFERENT NOISE POWERS.

σ2
n

Robust method (continuous phase) Robust method (1-bit ) Proposed method (1-bit)

E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ] E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ] E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ]

0 dB 7.50 2.71 -2.77 -6.02 3.16 -6.71 19.49 2.23 2.01

−10 dB 17.45 3.03 0.81 -0.29 3.56 -4.29 28.71 2.14 6.41

−20 dB 26.29 3.40 3.32 -19.21 4.92 -6.95 35.98 2.46 8.53

(a) (b) (c)

Fig. 4. The distribution of radar output SINR at different error power. (a) σ2
ε = −20 dB. (b) σ2

ε = −10 dB. (c) σ2
ε = 0 dB.

TABLE V
STATISTICAL CHARACTERISTICS COMPARISON OF DIFFERENT METHODS AT DIFFERENT ERROR POWER.

σ2
ε

Robust method (continuous phase) Robust method (1-bit ) Proposed method (1-bit)

E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ] E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ] E [γ] /dB D [γ] /dB
E[γ]−γ0

D[γ]

0 dB 17.45 3.03 0.81 -0.29 3.56 -4.29 28.71 2.14 6.41

−10 dB 21.23 0.65 9.58 -14.11 0.96 -30.32 27.93 0.7 18.47

−20 dB 20.08 0.2 25.40 -12.27 0.24 -113.63 25.62 0.25 42.48

B. The Output SINR under Different Error Power

In this subsection, we compare the performance of radar
output SINR for different error powers. We consider setting
the error power σ2

ε to -20 dB, -10 dB and 0 dB respectively,
while fixing the noise power σ2

n = -10 dB.
Fig. 4 displays the output SINR distribution histograms for

different error powers, generated from 5000 randomly TIRs.
The mean E [γ] and the standard deviation D [γ] of the output
SINR are given in Tab. V. It can be found from Fig. 4 that the
shape of the histogram varies as the error power increases.
When the error power is -20 dB or -10 dB, the standard
deviation of our proposed method is almost the same as that
of the robust method [23], while exhibiting significantly im-
proved in terms of the output SINR. However, when the error
power is 0 dB, the proposed method significantly reduces the
standard deviation D [γ] of the output SINR while improving
the output SINR, compared to the robust method. Additionally,
our proposed method achieves a much higher value of E[γ]−γ0

D[γ] .
It is indicated that when the error power is relatively low,
utilizing the PRD metric for the design of TW and RF does not
alter the standard deviation of the output SINR. Conversely,
as the error power increases, our proposed method reduces the
standard deviation of the output SINR, demonstrating strong

probabilistic robustness.

C. Probability of Output SINR Greater than Threshold
In this subsection, we firstly compare the value of

Pr {γ (w, s) ≥ γ0} for different values of γ0. Here, we set
σ2
n = -10 dB and σ2

ε = 0 dB. Fig. 5 illustrates the optimal
probability values (optimal solution for problem (39)) as
well as the probability values obtained from Monte Carlo
simulations when different γ0 are considered. It is evident
that the probability obtained from Monte Carlo simulations,
using the solved optimal TC and RF, outperforms the optimal
solution of problem (39). This difference arises due to the
relaxation processing in (32) and (36). Furthermore, when γ0
exceeds a specific threshold, both probability values become
zero. This occurs because, given the input signal, clutter and
noise power, it is not possible to find the TC and RF in problem
(39) that yields an output SINR greater than the specific
threshold. Consequently, the probability value becomes zero.

Secondly, we evaluated the detection probability perfor-
mance of the proposed method and compared it with the robust
method. Using the evaluation criteria presented in [26], the
stable detection probability is defined as

Psd =
Nr

Nm
(46)
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Fig. 5. Comparison of probability values. Fig. 6. Stable detection probability comparison.

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT QUANTIZATION BITS.

Quantization bit Robust method E [γ] /dB Proposed method E [γ] /dB

N = 3, L = 5,
M = 7

1-bit -2.12 14.48
2-bit 1.86 14.39
3-bit 1.84 15.03

continuous phase 6.93 /

N = 5, L = 5,
M = 9

1-bit -13.42 16.02
2-bit -2.15 17.04

continuous phase 8.64 /

where Nm denotes the total number of Monte Carlo simu-
lations, and Nr represents the count of occurrences of the
event {γ (s,w) ≥ γ0} during the Monte Carlo trials. Fig. 6
shows the stable detection probability Psd for various values
of σ2

n, with σ2
ε = 0 dB and γ0 = 10 dB. It can be seen that

the proposed method achieves a higher Psd value, particularly
in scenarios with high noise power, demonstrating excellent
performance.

D. Performance under Different Quantization Bit

In this subsection, we evaluate the performance of the
proposed method under different quantization bits. Here, we
set σ2

n = 0 dB, and γ0 = 5 dB. Considering the high
operational complexity of the proposed algorithm, we select
relatively small values for N and L. Tab. VI presents the
performance of the proposed algorithm for different numbers
of bits. It is observed that when N = 3, increasing the number
of bits from 1 to 2 does not significantly improve the output
SINR due to the relatively short TC. This phenomenon stems
from two factors: the short length of the TC and the high
quality of the solutions obtained through the proposed method.
At N = 3, the proposed method already generates high-quality
solutions when the number of bits is 1. Due to the short length
of N , transitioning from 1 to 2 bits might not significantly
enhance the output SINR of the proposed method. In this case,
substantial improvements in radar output SINR can only be
achieved through further increases in the number of bits (e.g.,
3bits) or in the length of N (e.g., N = 5).

In contrast, since robust methods do not yield high-quality
solutions, a significant increase in the radar output SINR is
observed with an increase in the number of bits. However,

once the upper performance limit of the robust method is
reached, further increasing the number of bits does not lead
to an improvement in the output SINR. For instance, when
N = 3, increasing the number of bits from 1 to 2 results in a
significant improvement in the output SINR, whereas there is
no significant change from 2 to 3.

E. Computational complexity
In this subsection, we attempt to analyze the complexity of

solving problem (41) using the following way. The integer
variable D, constrained by (29h) and (29i), encompasses
O(QN ) states. For each state, the computational complexity of
solving for variable w is O(M3.5). Employing the exhaustive
method, the computational cost of solving problem (41) at
each step of the bisection search does not exceed O(QNM3.5).

In addition, we evaluate the operational time of the proposed
algorithm under different quantization bits. Since the solution
accuracy ϵ influences the number of iterations in Algorithm
1, we focus on the computational time to solve the problem
(41) once. In other words, the Algorithm 1 executes only one
loop. Herein, we set N = 3, L = 5. The operation time
of the proposed algorithm for different quantization bits is
presented in Tab. VII. It can be observed that as the number of
quantization bits increases, the operation time of the proposed
method also increases. This is because an increase in the
number of quantization bits leads to a higher-dimensional
solution vector f , resulting in a longer operation time. This is
also a drawback of our proposed method.

V. CONCLUSION

In this paper, we have addressed the problem of proba-
bilistically robust joint design of TC and RF for extended
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TABLE VII
OPERATION TIME OF THE PROPOSED METHOD FOR DIFFERENT

QUANTIZATION BITS.

N = 3, L = 5, 1-bit 2-bit 3-bit 4-bit

M = 7 11.25s 60.01s 796.35s 14567s

targets detection. Considering a limited number of bits in
the digital waveform generators, the TW was restricted to
discrete phase codes. Subsequently, we proposed an MIP
approach to optimize TC and RF simultaneously, resulting in
high quality solutions. Simulation experiments demonstrated
the effectiveness and superiority of the proposed algorithm.
It is worth noting that that the proposed method can be
applied to many joint optimization models with continuous
and discrete variables. As a future work, we shall consider
how to obtain high-performance TC and RF when the TIR
probability distribution model is uncertain, and study how to
reduce the high computational complexities arising from the
solving the optimization problem.
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