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High-Performance Beampattern Synthesis via
Linear Fractional Semidefinite Relaxation

and Quasi-Convex Optimization
Xuejing Zhang , Student Member, IEEE, Zishu He , Member, IEEE, Xuepan Zhang, and Weilai Peng

Abstract— This paper presents a new method to synthesize
high-performance beampatterns, with the aid of linear fractional
semidefinite relaxation (LFSDR) technique and a quasi-convex
optimization approach. We consider two beampattern synthesis
problems. The first one is how to determine the weight vector to
maximize the array gain (or equivalently, to minimize the gain
loss in mainlobe), under the condition that the amplitude response
satisfies specific requirements. The second one is how to minimize
the notch level at a given region, on the premise of a permissible
gain loss in mainlobe. To these ends, two nonconvex optimization
problems are first formulated and then relaxed to their quasi-
convex forms, by using the LFSDR technique. To further solve
the resultant problems, the bisection method, which is commonly
used in quasi-convex optimization, is adopted. Suboptimal solu-
tions to the original nonconvex problems are finally obtained
through eigenvalue decomposition or randomization manipula-
tions. The proposed method performs well in both the cases
described earlier. Moreover, our method is not limited to the
array configurations and/or noise environments. Representative
simulations are presented to demonstrate the effectiveness of the
proposed method in high-performance beampattern synthesis.

Index Terms— Beampattern synthesis, linear fractional semi-
definite relaxation (LFSDR), mainlobe loss minimization, notch
minimization, shape constraint, quasi-convex optimization.

I. INTRODUCTION

ANTENNA arrays are widely used in many modern
remote sensing, radar, and wireless communication

systems [1]–[3]. Beampattern is one of the most important
characteristics for assessing performance of an array. How to
determine the complex weights for array elements to obtain a
desired beampattern, i.e., beampattern synthesis [4]–[7], is a
fundamental problem. As is known, the beampattern shape is
important and has been widely considered in the literature.
In practical applications, however, the array gain, which is
proportional to the output signal-to-noise-ratio (SNR) as the
input SNR fixed [8], directly affects the system performances,
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such as targets detecting/tracking, parameter estimation, and
so on. Therefore, beampattern synthesis with both shape and
array gain being considered is of great importance for practical
antenna arrays.

Many beampattern synthesis approaches have been pro-
posed during the past several decades. For instance, the clas-
sical Dolph–Chebychev synthesis technique obtains uniform
sidelobes and a beamwidth that is the minimum possible
for the given sidelobe level [9]. However, its application to
arrays with arbitrary geometries or nonisotropic elements is
not straightforward. Global optimization-based methods, such
as genetic algorithm [10], simulated annealing method [11],
and particle swarm optimization method [12], are applica-
ble to nonuniformly spaced arrays. Nevertheless, the heavy
computational load would limit their practical applications.
Beampattern synthesis approaches developed on the basis of
the adaptive array theory in [13] and [14] have no limitations
on the array configurations. However, they are unable to
control the beampattern precisely according to the required
specifications. More importantly, some key parameters in these
approaches are often selected in an ad hoc manner. Determin-
istic schemes on parameter selection need further investigation.
Chou et al. [15] develop an efficient approach to synthesize
the near-field pattern of an antenna array, by utilizing a global
basis set to represent the excitation amplitude of the array with
an additional phase impression to generate focused spot beam
in the near zone. For a large planar array with periodic element
spacing, low-sidelobe pattern is obtained in [16] by utilizing
successive fast Fourier transform. And the quantization error
is further considered in [17], in combination with the iterative
Fourier transform method. A general design procedure is
obtained in [18] to synthesize any type of pattern, such as
sum, difference, and shaped beams, by using the Poisson
sum expansion of the array factor. A fast pattern synthesis
algorithm for conformal antenna arrays is presented in [19],
which allows the simultaneous synthesis of the copolar and of
the cross-polar array patterns, together with the control of the
dynamic range ratio of the excitations.

As a powerful mathematical tool, the convex optimization
theory has been successfully exploited to synthesize desir-
able beampatterns. For example, Lebret and Boyd [20] have
shown how convex optimization can be utilized to design
the optimal pattern for arbitrary antenna arrays. Semidefinite
programming is employed in [21] to design nonuniform arrays
with a desired magnitude response. Convex optimization is
adopted in [22] to achieve a pattern that is arbitrarily upper
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bounded while its polarization is optimized in a given angular
region. Fuchs and Rondineau [23] present several procedures
to synthesize array pattern while controlling the excitations,
and find the ultimate solutions by using convex optimization
technique. Note that although beampattern synthesis problems
are usually nonconvex, convex optimization techniques are
still of great use. By iteratively linearizing the nonconvex
power pattern function, a series of convex subproblems is
obtained in [24] and further solved using the second-order
cone programming. By utilizing the symmetric geometries
of linear and planar arrays, a conjugate symmetric weight
vector is adopted in [25] such that the nonconvex lower bound
constraints on the beampattern can be convexified. In [26],
the semidefinite relaxation (SDR) technique [27] is employed
to approximate the nonconvex constraints in the beampattern
synthesis problem as convex. Consequently, a computationally
efficient approach to the synthesis of shaped beams is devised.
Apart from the aforementioned methods, there also exist some
approaches attempting to synthesize patterns by using the
embedded element pattern decomposition [28], utilizing the
least-squares method [29]–[31], employing Hankel transfor-
mation and nonstochastic optimization [32], or with the aid of
the array response control algorithms [33]–[37].

Notice that the above-mentioned approaches only focus on
the shape of a beampattern, but ignore the consideration on
array gain. In fact, array gain is directly related to the output
SNR and power loss in mainlobe region, and has been delib-
erated for array designers. A beampattern being well designed
in shape (i.e., sidelobe level, mainlobe width, and so on) may
consume much power on individual element and result little
radiation power in the desired direction. A few approaches
have been presented to improve the array gain and reduce
the energy loss in mainlobe. Dawoud and Anderson [38]
attempted to improve the array gain by taking advantage of
the polynomial optimization. However, this method is limited
to uniformly spaced arrays and its extension to general con-
figuration is still an open problem. In [39], the beam shaping
approach minimizes the mainlobe loss under the constraint that
the sidelobes are below a particular threshold, or minimizes
the sidelobe level at a prescribed region under the given
mainlobe loss constraint. This method designs a phase-only
weight vector which does not ensure a high performance of
the resulting beampattern.

In order to synthesize a high-performance beampattern with
both shape and array gain considered, a new beampattern
synthesis method is proposed in this paper, by using SDR
and quasi-convex optimization. We address two commonly
encountered beampattern synthesis problems as similarly con-
sidered in [39]. The first one concerns the determination
of the weight vector, which minimizes the mainlobe loss
under the constraint that the beampattern shape meets some
specific requirements. The second problem can be regarded
as the dual form of the first one, i.e., how to minimize the
sidelobe level at given region(s) under the condition that the
mainlobe shape and the array gain loss satisfy prescribed
requirements. As shall be shown later, both these two problems
are nonconvex and can be handled in similar manners. More
specifically, the original formulation is first converted into a

quasi-convex linear fractional SDR (LFSDR) problem [41].
On this basis, the bisection method [42]–[44] is adopted to
obtain the optimal solution of the LFSDR problem. Finally,
we extract a suboptimal solution of the original problem
by using the eigenvalue decomposition (EVD) or Gaussian
randomization. The proposed approach is not limited to a
phase-only weight vector, and it performs well in both the
two aforementioned cases. Moreover, the proposed method
has no limitations on the noise structure and the array
configuration.

This paper is organized as follows. In Section II, preliminar-
ies are provided. The LFSDR and quasi-convex optimization
are briefly introduced in Section III. Two beampattern syn-
thesis problems are considered in Section IV. In Section V,
numerical examples are conducted to demonstrate the perfor-
mance of the proposed method, and conclusions are drawn in
Section VI.

II. PRELIMINARIES

Let us consider an N-element antenna array with arbitrary
geometry. For convenience, we consider the 1-D array in this
paper. However, the proposed method herein can be applied
to the 2-D scenario. The steering vector associated with the
direction θ is given as

a(θ) = [g1(θ)e jφ1(θ), · · · , gN (θ)e jφN (θ)]T (1)

where gn(θ) represents the radiation pattern of the nth element
(we have gn(θ) = 1 when the antenna is isotropic), φn(θ)
stands for the phase delay of the nth element, n = 1, . . . , N ,
(·)T denotes the transpose operator, and j = √−1 is the
imaginary unit. The normalized array power response is given
as

B(θ, θ0) = |wH a(θ)|2/|wH a(θ0)|2 (2)

where w = [w1, w2, . . . , wN ]T is the weight vector, (·)H

denotes conjugate transpose operator, and θ0 stands for the
direction of beam axis, which is also the incidence angle of
the desired signal. The normalized array response B(θ, θ0) is
important to an array system and has been well designed in
quite a number of literatures.

In the case of one single signal, the array observation can
be expressed as

x(t) = xs(t) + xn(t) (3)

where xs(t) and xn(t) stand for the signal component and
the noise component, respectively. The covariance matrices of
signal and noise can be, respectively, written as

Rs = E
[
xs(t)xH

s (t)
] = σ 2

s a(θ0)aH (θ0) (4)

Rn = E
[
xn(t)xH

n (t)
] = σ 2

n � (5)

where σ 2
s and σ 2

n are the powers of signal and noise, respec-
tively. � in (4) is positive semidefinite to characterize the
structure of noise and is termed in [8] as the normalized noise
covariance matrix. Clearly, the input SNR is given as

SNRin = σ 2
s /σ 2

n . (6)
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For a given weight vector w, the array output can be written
as y(t) = wH x(t), and the output power satisfies

E[|y(t)|2] = wH Rsw + wHRnw (7)

where wH Rsw and wH Rnw represent the output components
of signal and noise, respectively. Then, the output SNR can
be expressed as

SNRout = wH Rsw
wH Rnw

= σ 2
s wH a(θ0)aH (θ0)w

σ 2
n wH�w

. (8)

It is known that one of the major tasks of an array is to
improve the output SNR by adding signals coherently and
noise incoherently [8]. The improvement is usually measured
by the array gain, which is defined as the ratio of the output
SNR and input SNR. According to (6) and (8), the array gain
can be expressed as

G(w) � SNRout

SNRin
= wH a(θ0)aH (θ0)w

wH�w
. (9)

Clearly, maximizing G(w) by finding an optimal weight
vector (denoted by w and termed as quiescent weight vector in
the relevant literatures) is a so-called Rayleigh quotient prob-
lem [40], which can be solved by the generalized EVD of the
matrix pencil ([a(θ0)aH(θ0)],�). More precisely, the weight
vector w that maximizes G(w) satisfies

[a(θ0)aH(θ0)]w = λ1�w (10)

where λ1 is the maximum eigenvalue of the generalized EVD.
It can be readily obtained from (10) that w corresponds to the
principal eigenvector of the matrix pencil ([a(θ0)aH (θ0)],�).
Note that the following important inequality is satisfied for the
quiescent weight vector w, that is,

G(w) ≤ G(w) ∀w ∈ C
N . (11)

In addition, one can obtain w = a(θ0) in a Gaussian white
noise environment, i.e., � = I.

In general, a weight vector w that is designed to make
the normalized array response B(θ, θ0) satisfies the specific
requirements will cause (more or less) gain loss. For this
consideration, we attempt to investigate how to synthesize a
desirable beampattern with both shape and array gain well
performed. To this end, let us define a gain loss (or mainlobe
loss) indicator to measure the array gain attenuation as

Loss(w) � G(w)/G(w). (12)

Meanwhile, we can obtain the attenuated beampattern as

P(θ, θ0) = B(θ, θ0)·G(w)

G(w)
= B(θ, θ0)

Loss(w)
(13)

which illustrates the gain loss intuitively as shall be shown in
simulations later.

III. LINEAR FRACTIONAL SEMIDEFINITE RELAXATION

AND QUASI-CONVEX OPTIMIZATION

To be more self-contained, we introduce the LFSDR and
quasi-convex optimization in this section.

A. Linear Fractional Semidefinite Relaxation

As shown in [41], LFSDR is a simple variant of SDR [27],
which is a powerful and computationally efficient approxima-
tion technique for a host of difficult optimization problems.

1) SDR: Let us consider the following real-valued quadrat-
ically constrained quadratic program as

min
v∈Sn

vT Cv (14a)

s.t. vT Bi v �i di , i = 1, . . . , m (14b)

where �i can represent either ≥,=, or ≤ for each i , C, Bi ∈
Sn , where Sn stands for the set of real symmetric n × n
matrices, each di in (14) is real number for ∀i = 1, . . . , m.
An important observation is that

vT Cv = tr(CvvT ), vT Bi v = tr(Bi vvT ) (15)

where tr(·) denotes the trace of a matrix. On this basis,
we introduce a new variable V = vvT and reformulate the
problem (14) as

min
V∈Sn

tr(CV) (16a)

s.t. tr(Bi V) �i di , i = 1, . . . , m (16b)

V � 0 (16c)

rank(V) = 1. (16d)

Note that the constraint rank(V) = 1 is imposed since
rank(V) = rank(vvT ) = 1. However, this constraint is
nonconvex. The basic concept of SDR is dropping the rank
constraint and relaxing the problem (16) as

min
V∈Sn

tr(CV) (17a)

s.t. tr(Bi V) �i di , i = 1, . . . , m (17b)

V � 0. (17c)

This is a convex problem, and therefore, can be effectively
solved by software packages [45].

Once the optimal solution to (17) (denoted by V̂) has been
obtained, a feasible solution to (14) can be extracted from V̂.
Many approaches have been developed toward this purpose.
For example, through EVD, we can get a potential solution of
problem (14) as ṽ = √

σ1u1, where σ1 is the largest eigenvalue
of V̂ and u1 is the corresponding eigenvector. One may also
extract an approximate solution to (14) from V̂ by using the
so-called randomization approach [27].

2) LFSDR: As a modification of SDR, the LFSDR
method [41] deals with the problems as follows:

min
v∈Rn

vT Cv
vT Fv

(18a)

s.t.
vT Bi v
vT Di v

�i di , i = 1, . . . , m (18b)

where F and Di are semidefinite matrices for i = 1, . . . , m.
By defining V = vvT , one can rewrite (18) in terms of V as

min
V∈Sn

tr(CV)

tr(FV)
(19a)

s.t.
tr(Bi V)

tr(Di V)
�i di , i = 1, . . . , m (19b)
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V � 0 (19c)

rank(V) = 1. (19d)

Similar to the SDR technique, problem (19) can be relaxed
(by removing the rank-1 constraint) as

min
V∈Sn

tr(CV)

tr(FV)
(20a)

s.t. tr[(Bi − di · Di )V] �i 0, i = 1, . . . , m (20b)

tr(Di V) ≥ β, i = 1, . . . , m (20c)

V � 0 (20d)

where β > 0 is a small number introduced to prevent the
solution from being zero. Once the problem (20) has been
solved, the EVD or randomization procedures can be applied
to further obtain an approximation solution to the original
problem (18). Unfortunately, the optimization problem (20)
is nonconvex owing to the nonconvexity of tr(CV)/tr(FV)
in (20a), thus failing to be solved directly by convex tool-
box [45]. Nevertheless, as it will be shown in Section II-B, the
cost function (20a) is actually a quasi-convex function and the
problem (20) can be solved via bisection method in polynomial
time.

B. Quasi-Convex Function and Quasi-Convex Optimization

Quasi-convex function is an important kind of mapping,
it is more generalized than the well-known convex function.
Several quasi-convex optimization methods have been devel-
oped and utilized in the fields of signal processing [42] and
machine learning [43]. In this section, preliminaries of the
quasi-convex function and quasi-convex optimization problem
are provided. The bisection algorithm [42]–[44], which is
commonly adopted to deal with the quasi-convex optimization
problems, is also introduced.

Definition 1: A function f : R
n → R is quasi-convex if its

domain dom( f ) and all its α-sublevel sets defined as

Sα = {z|z ∈ dom( f ), f (z) ≤ α} (21)

are convex for ∀α ∈ R.
For illustration, the curve of a quasi-convex function is

plotted in Fig. 1, where the dashed line segment AB that lies
below the curve indicates the nonconvexity of the function.
Obviously, a convex function has convex sublevel sets, and
therefore, is quasi-convex, but the reverse may not hold true.

Definition 2: A function f is quasi-concave if − f is
quasi-convex. Moreover, if f is both quasi-convex and quasi-
concave, we term it as quasi-linear.

From the above-mentioned definitions, it can be inferred
that the cost function f (V) = tr(CV)/tr(FV) in (20) is quasi-
linear.

As for the quasi-convex optimization problem, it has a form
as

min
z

f0(z) (22a)

s.t. fi (z) ≤ 0, i = 1, . . . , m (22b)

hi (z) = 0, i = 1, . . . , p (22c)

Fig. 1. Illustration of a quasi-convex function.

where f0(z) is quasi-convex, fi (z) is convex, and hi (z) is
affine. To solve the problem (22), we reformulate it by using
the epigraph representation [44] as

min
z

τ (23a)

s.t. f0(z) ≤ τ (23b)

fi (z) ≤ 0, i = 1, . . . , m (23c)

hi (z) = 0, i = 1, . . . , p . (23d)

Note that the inequality constraints set {(z, τ )
∣
∣ f0(z) ≤ τ } is

not a convex set since f0 is quasi-convex, and thus, the prob-
lem (23) is nonconvex. However, by fixing τ , the following
problem of finding the feasible set is convex:

find z (24a)

s.t. f0(z) ≤ τ (24b)

fi (z) ≤ 0, i = 1, . . . , m (24c)

hi (z) = 0, i = 1, . . . , p. (24d)

It can be observed that the convex constraint set, denoted
as Cτ , of the problem (24) can be expressed as

Cτ = {z∣∣ f0(z) ≤ τ, fi (z) ≤ 0, i = 1, . . . , m

hi (z) = 0, i = 1, . . . , p}. (25)

Furthermore, it satisfies

Cτ ⊆ Cs ∀τ ≤ s. (26)

More importantly, we have Cτ 
= ∅ for τ ≥ τ ∗ and Cτ =
∅ for τ < τ ∗, where τ ∗ denotes the optimal value of the
problem (23).

This observation (26) is significant to the idea for solv-
ing (22) or (23).

As aforementioned, the bisection method is a common
technique to solve quasi-convex problem as (23). In brief,
the optimization problem (23) is tackled via bisection method
by iteratively decreasing τ until the problem (24) is feasible for
τ ∈ [τ ∗, τ ∗ + ε], where ε is a preassigned small positive real
number. More specifically, it is first assumed that τ ∗ lies within
[l, u], where both the lower bound l and the upper bound u
of the interval are predetermined by the associated constraints.
Next, we examine the feasibility of the midpoint τ = (l+u)/2
according to the problem (24). If (24) is feasible, then we set
u = τ , otherwise, we update l = τ . The convex feasibility
problem (24) will be tested again by using the new interval
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TABLE I

BISECTION METHOD FOR SOLVING QUASI-CONVEX PROBLEM (22)

until u − l ≤ ε. The bisection method, for an ε-suboptimal
solution, is summarized in Table I.

Now, recalling the optimization problem in (20), one finds
that it is a special case of (22). Thus, it can be solved straight-
forwardly, by using the above-mentioned bisection method.

IV. HIGH-PERFORMANCE BEAMPATTERN SYNTHESIS VIA

LFSDR AND QUASI-CONVEX OPTIMIZATION

In this section, we address two high-performance beam-
pattern synthesis problems by using LFSDR, quasi-convex
optimization and the bisection method.

A. Mainlobe Loss Minimization

In order to guarantee a high output SNR for an array system,
it is desirable to minimize the mainlobe loss, or equivalently to
maximize the array gain, under a specific shape constraint on
beampattern. More specifically, the beampattern is often upper
bounded by an envelop over some sidelobe regions, while in
the mainlobe region, it usually requires both upper bound and
also lower bound constraints on the beampattern. On the basis
of these constraints on beampattern, we maximize the array
gain by formulating the optimization problem as

max
w

G(w) (27a)

s.t. B(θ, θ0) ≤ ρ(θ), θ ∈ �S (27b)

l(θ) ≤ B(θ, θ0) ≤ u(θ), θ ∈ �M (27c)

where ρ(θ) stands for the upper bound level at a specific
sidelobe region �S and l(θ) and u(θ) represent the lower
bound level and the upper bound level, respectively, of the
mainlobe region �M .

Then, according to the expressions of B(θ, θ0) in (2) and
G(w) in (9), the problem (27) can be rewritten as

min
w

− wH a(θ0)aH (θ0)w
wH�w

(28a)

s.t.
wH a(θ)aH(θ)w

wH a(θ0)aH(θ0)w
≤ ρ(θ), θ ∈ �S (28b)

l(θ) ≤ wH a(θ)aH(θ)w
wHa(θ0)aH(θ0)w

≤ u(θ), θ ∈ �M . (28c)

Note that the maximization problem (27) has been converted
into a minimization problem. To proceed, let us define

Aθ � a(θ)aH (θ) ∈ CN×N (29)

and then convert the problem (28) into the real domain for
implementing consideration as

min
w̃

− w̃HÃθ0w̃

w̃H�̃w̃
(30a)

s.t.
w̃HÃθ w̃

w̃H Ãθ0w̃
≤ ρ(θ), θ ∈ �S (30b)

l(θ) ≤ w̃HÃθ w̃

w̃H Ãθ0w̃
≤ u(θ), θ ∈ �M (30c)

where

Ãθ �
[{Aθ } −�{Aθ }
�{Aθ } {Aθ }

]
∈ R

2N×2N (31a)

�̃ �
[{�} −�{�}
�{�} {�}

]
∈ R

2N×2N (31b)

w̃ �
[(wT ) �(wT )

]T ∈ R
2N (31c)

(·) and �(·) return the real and imaginary parts of the
bracketed term, respectively.

Applying the LFSDR technique to (30) yields the following
relaxed problem:

min
W̃

− tr(Ãθ0W̃)

tr(�̃W̃)
(32a)

s.t. tr[(Ãθ − ρ(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �S (32b)

tr[(Ãθ − u(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �M (32c)

tr[(Ãθ − l(θ) · Ãθ0)W̃] ≥ 0, θ ∈ �M (32d)

tr(W̃) ≥ β (32e)

W̃ � 0 (32f)

where β can be assigned as a small positive value as discussed
earlier in (20), W̃ is a rank-1 matrix defined as

W̃ � w̃w̃T ∈ R
2N×2N . (33)

Note that in (32), the nonconvex constraint rank(W̃) = 1 has
been dropped for relaxation.

As described earlier in the last section, problem (32) is
quasi-convex and can be expressed as

min
W̃

τ (34a)

s.t. tr[(Ãθ0 + τ · �̃)W̃] ≥ 0 (34b)

tr[(Ãθ − ρ(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �S (34c)

tr[(Ãθ − u(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �M (34d)

tr[(Ãθ − l(θ) · Ãθ0)W̃] ≥ 0, θ ∈ �M (34e)

tr(W̃) ≥ β (34f)

W̃ � 0. (34g)

Accordingly, for a fixed τ , the following problem is convex:

find W̃ (35a)

s.t. tr[(Ãθ0 + τ · �̃)W̃] ≥ 0 (35b)

tr[(Ãθ − ρ(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �S (35c)

tr[(Ãθ − u(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �M (35d)

tr[(Ãθ − l(θ) · Ãθ0)W̃] ≥ 0, θ ∈ �M (35e)

tr(W̃) ≥ β (35f)
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W̃ � 0. (35g)

Moreover, recalling the inequality (11), we can find that
τ ∈ [−G(w), 0], where the quiescent weight w can be
determined by (10). With this observation, the solution to (32),
denoted as W̃1, can thus be determined by using the bisection
method as given in Table I. On this basis, the associated w̃1
can be obtained via EVD or randomization as mentioned in
Section III-A. Finally, from (31c), we can extract the weight
vector as

ŵ = [w̃1(1), . . . , w̃1(N)]T + j [w̃1(N + 1), . . . , w̃1(2N)]T

= [
IN jIN

]
w̃1 (36)

where w̃1(n) denotes the nth entry of w̃1 and IN denotes the
N × N identity matrix.

B. Notch Minimization

Now, let us consider the notch minimization problem under
the constraints of array gain and also the mainlobe shape.
In this case, both the upper bound and the lower bound con-
straints are imposed on the responses of the mainlobe region.
In addition, we constrain the array gain to be higher than a
specific threshold. On this basis, we minimize the response
level of a specific sidelobe sector where fixed interferences
may exist. Mathematically, this problem can be formulated as

min
w

max
θ∈�S

B(θ, θ0) (37a)

s.t. l(θ) ≤ B(θ, θ0) ≤ u(θ), θ ∈ �M (37b)

G(w) ≥ η (37c)

where �S is the notch region where the response level needs
to be minimized, �M denotes the mainlobe region, l(θ) and
u(θ) specify, respectively, the lower bound level and the upper
bound level at �M , and η is a user-defined permissible array
gain.

The above-mentioned problem can be equivalently rewritten
as

min
w

τ (38a)

s.t. B(θ, θ0) ≤ τ, θ ∈ �S (38b)

l(θ) ≤ B(θ, θ0) ≤ u(θ), θ ∈ �M (38c)

G(w) ≥ η. (38d)

For the ease of implementing, we convert the problem (38)
into the real domain as

min
w

τ (39a)

s.t.
w̃HÃθ w̃

w̃H Ãθ0w̃
≤ τ, θ ∈ �S (39b)

l(θ) ≤ w̃H Ãθ w̃

w̃HÃθ0w̃
≤ u(θ), θ ∈ �M (39c)

w̃H Ãθ0w̃

w̃H�̃w̃
≥ η (39d)

where Ãθ , �̃, and w̃ have been defined in (31). Then, by using
the LFSDR approach, we can obtain a quasi-convex optimiza-
tion problem as

min
W̃

τ (40a)

s.t. tr[(Ãθ − τ · Ãθ0)W̃] ≤ 0, θ ∈ �S (40b)

tr[(Ãθ − u(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �M (40c)

tr[(Ãθ − l(θ) · Ãθ0)W̃] ≥ 0, θ ∈ �M (40d)

tr[(η · �̃ − Ãθ0)W̃] ≤ 0 (40e)

tr(W̃) ≥ β (40f)

W̃ � 0 (40g)

where the rank-1 matrix W̃ has been defined in (33). As we
have shown earlier, for a given τ in problem (40), the follow-
ing convex optimization problem can be obtained:

find W̃ (41a)

s.t. tr[(Ãθ − τ · Ãθ0)W̃] ≤ 0, θ ∈ �S (41b)

tr[(Ãθ − u(θ) · Ãθ0)W̃] ≤ 0, θ ∈ �M (41c)

tr[(Ãθ − l(θ) · Ãθ0)W̃] ≥ 0, θ ∈ �M (41d)

tr[(η · �̃ − Ãθ0)W̃] ≤ 0 (41e)

tr(W̃) ≥ β (41f)

W̃ � 0. (41g)

Moreover, a simple calculation results that τ ∈ [0, γ ], where
γ = max

θ∈�S
B(θ, θ0) with B(θ, θ0) denoting the normalized

response pattern of w. In the same manner, the bisection
method can be utilized to get the optimal solution W̃2 of
the problem (41). Consequently, the obtained weight vector
is given as

ŵ = [
IN jIN

]
w2 (42)

where w2 can be similarly obtained from W̃2 via EVD or ran-
domization procedure.

Remark: If we assume that the noise be white and Gaussian
(i.e., � = I), and impose a phase-only constraint on the weight
vector, then one can find that wH�w is a constant with known
value. Thus, the resulting problem can be solved by using the
SDR technique [27]. This is exactly what literature [39] had
discussed. In addition, a minimax cost function [i.e., (37a)]
is adopted in the notch minimization case to result a uniform
notch level, which is not well guaranteed in [39]. Above all,
the proposed approach can be regarded as a generalization of
the phase-only method in [39]. The phase-only constraint is
unnecessary for the devised method and a uniform notch level
can be obtained in the notch minimization case.

V. NUMERICAL RESULTS

In this section, representative simulations are carried out
to validate the proposed method under the aforementioned
two scenarios. For convenience, the Gaussian white noise is
assumed, then we know that the quiescent weight w equal
to a(θ0). To illustrate the mainlobe losses of the synthe-
sized beampatterns, we consider the attenuated beampattern
P(θ, θ0) as defined in (13). In addition, we set β = 0.1 and
ε = 10−6 for all the simulations. The variable cvx_status
in CVX toolbox [45] is used to check the status of convex
feasibility problem when implementing the bisection method,
and the EVD manipulation is selected to extract a solution
afterward. For comparison purpose, the phase only method
in [39], convex programming (CP) in [20], the A2RC method
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Fig. 2. Beampattern comparison for mainlobe loss minimization by using
an ULA.

in [47], and the concave–convex procedure (CCP) method
in [49]–[51] are also tested if available.

A. Mainlobe Loss Minimization

In this section, we first specify the requirements on the
beampattern shape, and then minimize the mainlobe loss to
obtain a high array gain. Two different configurations are
considered as shown in the following.

1) Uniform Linear Array With Uniform Sidelobe at One
Single Region: In the first example, a linearly half-wavelength-
spaced array with 32 isotropic elements is considered. The
beampattern is assumed to steer to θ0 = −30°. The desired
sidelobe level is expected to be lower than −50 dB at the angle
sector �S = [50°, 65°] and no other requirements elsewhere.

Fig. 2 shows the synthesized beampatterns in this case.
From Fig. 2, it can be clearly seen that all the methods
tested achieve desirable sidelobe levels at the given sector �S .
Moreover, one can find that the proposed method obtains the
same beampattern as the CP method. When comparing the
array gain, the resulting mainlobe loss of the proposed method
is 0.058 dB, which is less than the corresponding values of the
phase-only method and the A2RC method. The effectiveness
of the proposed method is thus well validated.

As pointed out in [39], there are necessarily tradeoffs
between the depth of notches and the gain losses in mainlobe.
Fig. 3 displays the obtained mainlobe losses when varying
the notch levels from −60 to −30 dB, with other parameters
unchanged. From Fig. 3, we learn that the higher level in
notch region, the less mainlobe loss can be obtained. This
result is suitable for all the methods tested. The resulting
mainlobe losses of the proposed method are less than those
of the other methods, for the given sidelobe levels in notch.
Moreover, we can see that the mainlobe losses approximate to
be zeros as the notch levels being close to −30 dB, which is
the corresponding level of the quiescent pattern in the angle
sector �S , as shown in Fig. 2. In this case, the resulting weight
vectors of different methods degrade to the quiescent weight
w, which has no array gain loss.

Fig. 3. Curves of mainlobe loss versus the maximum sidelobe level in notch.

TABLE II

ELEMENT LOCATIONS OF THE NONUNIFORM LINEAR ARRAY AND THE

RESULTING WEIGHTS OF THE PROPOSED METHOD

2) Random Linear Array With Nonuniform Sidelobes and a
Flat-Top Mainlobe: To further examine the performance of the
proposed method in mainlobe loss minimization, we consider a
20-element nonuniform spaced linear array. The array element
locations are provided in Table II. We set the beam axis as
θ0 = 10°. The desired sidelobe level is nonuniform, i.e., it
varies with the angle θ . Specifically, the notch region is �S =
[−40°, − 20°] ∪ [50°, 60°], the sidelobe level is expected to
be lower than −30 dB if θ ∈ [−40°, − 20°] and lower than
−40 dB for θ in the interval [50°, 60°]. In addition, a flat-top
mainlobe is required and the ripple is expected to be less than
0.5 dB at the mainlobe region [5°, 15°].

Since the CP method does not work in this case, we
thus compare our method with the phase only method [39],
the A2RC method [47], and the CCP method [49]–[51]. The
resulting beampatterns are depicted in Fig. 4 and the obtained
weightings of the proposed method are listed in Table II. From
Fig. 4, it can be seen that both the phase-only method and the
A2RC method cannot form flat-top mainlobes, although the
resulting sidelobe levels may have satisfied the preassigned
requirements. The proposed method and the CCP method
have obtained desirable shapes in the prescribed regions.
When comparing the mainlobe loss, the resulting loss of
the proposed method is 8.1034 dB, which is less than the
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Fig. 4. Simulation result for a random linear array with nonuniform sidelobes
and a flat-top mainlobe.

9.5637 dB of the CCP method. The performance degradation
of the CCP method may be caused by its raised sidelobe
responses, see for example, the responses at the angle sectors
[−20°, 0°]∪[20°, 40°].

B. Notch Minimization

In this section, we present simulations to validate the
performance of the proposed method in notch minimization.

1) Uniform Linear Array: In this example, an uniform
linear array (ULA) with 32 isotropic elements is considered.
The beam axis is set at θ0 = 50°. The permissible mainlobe
loss is taken as η = 0.15 dB, and the notch region is
�S = [−70°,−50°] where the array response levels are
expected to be minimized. In this case, we do not impose
specific constraints on the responses of the mainlobe region.

Fig. 5 plots the simulation results of various methods.
It can be observed that the resulting losses in mainlobe are
all satisfied as desired. As for the notch levels, a uniform
level with −55 dB is obtained by using either the proposed
method or the CP method, while the obtained maximum notch
levels are −41 and −40 dB, respectively, for the phase only
method and the A2RC method. Since the proposed method
obtains the deepest notch with a qualified mainlobe loss, one
can see that it outperforms the other methods.

The similar to the simulation in Section V-A, we also
investigate the performance improvement of the proposed
method, by varying the permissible mainlobe loss from 0
to 0.21 dB, and then plotting the curves of the resulting
notch levels in Fig. 6, with other parameters unaltered. From
Fig. 6, it can be clearly seen that a larger permitted gain loss
corresponds to a deeper sidelobe notch, for all approaches.
For the given permissible mainlobe losses, the resulting notch
levels of the proposed method and the CP method are less
than those of the phase-only method and the A2RC method.
Moreover, when η is set as 0 dB, i.e., no gain loss is permitted,
all the resulting notch levels are −25 dB, which is exactly
the maximum response level of the quiescent pattern in the

Fig. 5. Notch minimization using an ULA with 32 isotropic elements.

Fig. 6. Curves of the obtained notch level versus the permissible loss in
mainlobe.

region �S . In this case, all the methods tested degenerate into
the quiescent weighting method.

2) Nonisotropic Linear Random Array: In this scenario,
we consider a 33-element nonisotropic linear random array,
which was also described in [46]–[48]. The individual pattern
for the nth element is given as

gn(θ) = cos[πlnsin(θ + ζn)] − cos(πln)

cos(θ + ζn)
(43)

where ζn and ln represent the orientation and length of the ele-
ment. More description of the array can be found in Table III,
where the sensor position xn is also specified. We steer the
beam to θ0 = 30° and take the permissible mainlobe loss as
η = 3 dB. The notch region is taken as �S = [−40°,−20°].
In addition, a flat-top mainlobe is expected in the angle sector
�M = [27°, 33°], and the ripple is restricted to be less than
0.5 dB.

Fig. 7 displays the synthesized beampatterns and Table III
lists the resulting weightings of the proposed method. Clearly,
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TABLE III

PARAMETERS OF THE NONISOTROPIC RANDOM ARRAY AND THE
OBTAINED WEIGHTINGS BY THE PROPOSED METHOD

Fig. 7. Notch minimization using a nonisotropic linear random array.

the phase only method does not shape a desirable flat-top
beampattern in the mainlobe region and its resulting notch
level at �S is rather high, although the obtained gain loss in
mainlobe is qualified. The CCP method, A2RC method, and

the proposed method have synthesized satisfactory beampat-
terns in the preassigned mainlobe region, and their resulting
gain losses also meet the requirements. When comparing the
obtained notch levels, the CCP method results a uniform
notch below −54 dB. In the sidelobe region �S , the resulting
maximal level of the A2RC method is about −44 dB. As for
the proposed method, the notch level is lower than −80 dB,
which is greatly less than those of both the CCP method and
the A2RC method. Thus, the promising performance of the
proposed method is clearly verified when it acts on a linear
random array with nonisotropic elements.

VI. CONCLUSION

In this paper, the LFSDR and quasi-convex optimization
have been applied to the synthesis of high-performance array
beampatterns. Two important beampattern synthesis problems,
i.e., mainlobe loss minimization and notch minimization,
have been considered. Specifically, the LFSDR approach is
first applied to relax and further convert the original prob-
lems to their corresponding quasi-convex formulations. Then,
the bisection method, which is a mature technology for solving
quasi-convex optimization problem, is utilized to find out
the corresponding solutions of the quasi-convex formulations.
Finally, we obtain the ultimate weight vectors via EVD or ran-
domization manipulation. The proposed method works well for
arbitrary arrays and has no limitation on the structure of noise
covariance matrix. Representative examples have been carried
out to illustrate the superiority of the proposed approach. As
a future work, we shall consider the extension of LFSDR
and quasi-convex optimization approaches to synthesize high-
performance array beampatterns under uncertainties, and study
how to reduce the possible high computation complexities of
related operations in the devised method.
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