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Abstract— In this paper, the problem of pattern synthesis with
antenna arrays is addressed, and new approaches based on
the recently developed accurate array response control (A2RC)
algorithm are presented. It is shown that the array weight vector
obtained by the A2RC algorithm to control the normalized
response at a single direction in each step belongs to a specific set.
Thus, an appropriate weight vector chosen from the intersection
of weight vector sets corresponding to the desired responses
at multiple directions is capable of simultaneously controlling
those responses. This results in the so-called multipoint accurate
array response control (MA2RC) algorithm. Moreover, in order
to avoid possible beam axis shift in pattern synthesis, a modified
MA2RC (M2A2RC) algorithm is proposed by imposing a deriv-
ative constraint on the direction of beam axis. Representative
numerical examples are provided to demonstrate the effectiveness
of the proposed MA2RC and M2A2RC algorithms for multipoint
responses control and pattern synthesis.

Index Terms— Array pattern synthesis, array response control,
array signal processing, derivative constraint.

I. INTRODUCTION

OVER the last few decades, a significant effort has
been devoted to the problem of array pattern synthesis,

which is of great importance for radar, navigation, wireless
communications, and remote sensing [1]–[4]. For linear half-
wavelength spaced arrays, the minimax problem of minimizing
the maximum sidelobe level in the pattern with the prescribed
beamwidth can be solved analytically by identifying the array
factor with Chebyshev polynomials [5]. For nonuniformly
spaced arrays, a general nonlinear minimax optimization
method was presented in [6], whereas for sparse circular
antenna arrays, a tapering technique over a reconstructed
continuous current distribution based on an expansion in
orthogonal basis functions was presented in [7]. On the other
hand, for arrays with arbitrary geometries, the utilization of
global optimization strategies, such as genetic algorithm [8],

Manuscript received October 3, 2016; revised March 23, 2017; accepted
June 17, 2017. Date of publication June 22, 2017; date of current ver-
sion August 2, 2017. This work was supported in part by the National
Nature Science Foundation of China under Grant 61671139 and Grant
61401284, and in part by the Foundation of the Department of Education of
Guangdong Province under Grant 2016KTSCX125. (Corresponding author:
Xuejing Zhang.)

X. Zhang, Z. He, and W. Peng are with the University of Elec-
tronic Science and Technology of China, Chengdu 611731, China (e-mail:
xjzhang7@163.com; zshe@uestc.edu.cn; lestinpwl@163.com).

B. Liao is with the College of Information Engineering, Shenzhen Univer-
sity, Shenzhen 518060, China (e-mail: binliao@szu.edu.cn).

X. Zhang is with the Qian Xuesen Laboratory of Space Technology,
Beijing 100094, China (e-mail: zhangxuepan@qxslab.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2017.2718582

particle swarm optimization [9], and simulated annealing [10],
has also been well studied. In general, these methods are
computationally prohibitive.

Taking advantage of the computational efficiency of convex
optimization, it is shown in [11] that a variety of antenna array
pattern synthesis problems (involving arrays with arbitrary
geometry, element directivity, constraints on far-/near-field
patterns over narrow or broad frequency bandwidth, and
some important robustness constraints) can be expressed
as convex optimization problems. In [12], pattern synthesis
using the second-order cone programming and semidefinite
programming techniques has been developed to deal with
array uncertainties. Furthermore, a general procedure based
on the semidefinite relaxation technique is proposed in [13] to
efficiently but approximately solve various nonconvex array
synthesis problems.

Unlike those methods mentioned earlier, the adaptive array
theory [14]–[16] has been exploited for pattern synthesis in
a number of works. For instance, Olen and Compton [17]
developed a systematic approach by assigning artificial inter-
ferers in sidelobe regions. Although this method is able to
control the sidelobe levels effectively, it is lack of ability to
control the response in the mainlobe region. More importantly,
it suffers from high computational complexity. Modifications
of [17] have been made to shape pattern in the mainlobe
region with relatively lower complexity in [18] as well as
to improve the convergence rate and computational efficiency
in [19] and [20]. By solving a sequence of linearly constrained
least squares problems, Tseng and Griffiths [21] presented a
simple iterative algorithm, which can be used to find array
weights that produce patterns with a given look direction and
an arbitrary sidelobe specification. It is worth noting that in the
most adaptive array theory-based methods, some parameters,
such as the power levels of artificial interferences, are selected
in an ad hoc way. Moreover, these methods have no closed-
form solutions in an iterative procedure and do not provide a
mechanism of flexibly controlling the array response both in
the mainlobe and sidelobe regions.

Recently, in [22], an accurate array response control (A2RC)
algorithm, which is shown to be flexible and effective, has been
reported, and a novel pattern synthesis approach for arbitrary
arrays has been developed by applying this algorithm. Unlike
the above-mentioned approaches, the pattern can be precisely
adjusted in a point-by-point manner by successively modifying
the weight vector. However, it is worth pointing out that,
in each step, only the response at a single direction can be
controlled. Furthermore, the problem of beam axis shift is not
adequately addressed. In other words, the beam axis of the
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synthesized pattern may be different from the desired one.
This motivates us to develop new approaches, which are able
to control the pattern responses at multiple directions and avoid
the problem of beam axis shift.

More precisely, in this paper, two novel algorithms, namely,
multipoint accurate array response control (MA2RC), and
its variant, modified multipoint accurate array response con-
trol (M2A2RC), are successively developed. First, it is shown
that the normalized pattern at a given direction is invariant by
scaling or adding a specific component to the weight vector
obtained by the A2RC algorithm [22]. This implies that the
weight vector, which adjusts the normalized response at a
given direction to a prescribed level, belongs to a specific set.
Moreover, this suggests that the weight vector lying in the
intersection of the sets corresponding to different directions
is capable of simultaneously adjusting the response levels at
those angles. On this basis, the intersection of those sets is
analyzed and the closed-form expression of MA2RC algorithm
is derived. To avoid possible beam axis shift when MA2RC
applied to pattern synthesis, we propose to impose a derivative
constraint (see also [23], [24]) of the pattern at the beam axis.
This leads to the so-called M2A2RC algorithm.

This paper is organized as follows. In Section II, the prob-
lem formulation of pattern synthesis is given. The proposed
MA2RC and M2A2RC algorithms are developed in Section III
by analyzing the weight vector of the A2RC algorithm. The
application of the M2A2RC algorithm to pattern synthesis is
discussed in Section IV. In Section V, numerical examples
are conducted to demonstrate the excellent performance and
effectiveness of the proposed methods on response control and
pattern synthesis. The conclusions are drawn in Section VI.

II. PRELIMINARIES

A. Array Model

Without loss of generality and for the sake of clarity,
we consider the 1-D case in which the steering vector of an
N-element array can be written as

a(θ) = [g1(θ)e− jωτ1(θ), . . . , gN (θ)e− jωτN (θ)]T ∈ C
N (1)

where (·)T stands for the transpose operator, j = √−1 denotes
the imaginary unit, gn(θ) is the pattern of the nth element,
τn(θ) represents the time delay between the nth element and
the reference point, and ω denotes the operating frequency.
Given the array weight vector w ∈ C

N , the response is
expressed as

f (θ) = wHa(θ) (2)

where (·)H denotes the Hermitian transpose.
It is known that pattern synthesis is to design an appropriate

weight vector w to make the amplitude of the array response,
i.e., | f (θ)|, which meets certain specific requirements.

B. A2RC Algorithm

As reported in [22], the A2RC algorithm stems from adap-
tive beamforming framework. More exactly, for the case of a
single interference, it was found that the optimal weight vector

Fig. 1. Distribution of μk+1 in the A2RC algorithm.

is the summation of the signal steering vector a(θ0) and the
interference steering vector a(θi ) multiplying by a specific μ.
The parameter μ plays an important role in adjusting the
normalized response level at θi . In particular, any nonnegative
normalized response level at θi can be achieved by selecting
an appropriated μ.

In order to synthesize the array pattern using the A2RC
algorithm, the array weight vector is initialized with a(θ0) and
updated as

wk+1 = wk,� + μk+1a(θk+1) (3)

where wk,� denotes the weight vector at the kth step and
θk+1 denotes the direction where the response to be adjusted.
Moreover, given the desired response level at θk+1 (denoted
by ρk+1), the corresponding μk+1 value that satisfies

L(k+1)(θk+1, θ0) =
∣
∣wH

k+1a(θk+1)
∣
∣2

∣
∣wH

k+1a(θ0)
∣
∣2

= ρk+1 (4)

can be any value on the circle Cμ with center point cμ and a
radius of rμ, as shown in Fig. 1. Here, cμ and rμ are unam-
biguously determined with a(θ0), a(θk+1), wk,�, and ρk+1.
In [22], it is shown that the optimal μk+1 value (denoted as
μk+1,�), which gives the minimum modulus and leads to the
least pattern distortion, is exactly the intersection of circle Cμ

and the segment between the origin O and center point cμ,
i.e., [Re(μk+1,�), Im(μk+1,�)] in Fig. 1. Re(·) and Im(·) denote
the real and imaginary parts of a complex value, respectively.
Therefore, μk+1,� and the corresponding weight vector wk+1,�

can be analytically expressed. More precisely, at the (k + 1)th
step, the array weight vector can be obtained as

wk+1,� = wk,� + μk+1,�a(θk+1). (5)

For the purpose of the subsequent research, a different
perspective on the selection of μk+1 is introduced here. Rather
than minimizing the pattern distortion, in this paper, we pro-
pose to minimize the projection of wk+1 = wk,�+μk+1a(θk+1)
to the projection matrix P⊥

wk,�
∈ CN×N as follows:

min
μk+1

‖P⊥
wk,�

(wk,� + μk+1a(θk+1))‖2
2 (6a)

s.t. μk+1 ∈ Cμ (6b)
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where ‖ · ‖ means the Euclidean norm of a vector and P⊥
wk,�

is given by

P⊥
wk,�

= I − wk,�wH
k,�

wH
k,�wk,�

. (7)

Since P⊥
wk,�

wk,� = 0, it is readily known that the optimal
solution, i.e., μk+1,�, has a minimum modulus, which cor-
responds to the point [Re(μk+1�), Im(μk+1,�)] in Fig. 1. The
analytical expression of μk+1,� can be found in our previous
work [22, eq. (52)].

III. PROPOSED MULTIPOINT ACCURATE ARRAY

RESPONSE CONTROL ALGORITHMS

As mentioned earlier, the A2RC algorithm can only con-
trol the response at a single direction each time. Moreover,
it may suffer from the problem of beam axis shift during
the synthesization. To this end, we introduce new approaches,
i.e., MA2RC and M2A2RC, by extending the A2RC algorithm
in this section.

A. MA2RC Algorithm

From (4), it is noticed that, by multiplying nonzero factor c
to wk+1,�, the new weight vector cwk+1,� leads to the same
response level at θk+1. Furthermore, the response would not
be changed by adding a vector �k+1, which is orthogonal to
both a(θk+1) and a(θ0), to cwk+1,�. This can be described as
follows:

|(cwk+1,� + �k+1)H a(θk+1)|2
|(cwk+1,� + �k+1)H a(θ0)|2 = ρk+1 (8)

for ∀c �= 0, �k+1⊥a(θ0) and �k+1⊥a(θk+1). Let us define

A(θ0, θk+1) � [a(θ0) a(θk+1)] ∈ C
N×2 (9)

Vk+1 � R(Vk+1) = R⊥(A(θ0, θk+1)) (10)

where R(·) represents the column space of a matrix, R⊥(·)
returns the orthogonal complement of R(·), and Vk+1 ∈
C

N×(N−2) is a matrix of full column rank and its column
space is R⊥(A(θ0, θk+1)). According to (8), it is known that
in order to ensure the response ρk+1, the weight vector w
can be any linear combination of wk+1,� and vectors in Vk+1,
except for the case of w ∈ Vk+1. As a result, if we define a
vector set Wk+1 as

Wk+1 � R([Vk+1 wk+1,�])\Vk+1 (11)

then it can be concluded that for any vector w in Wk+1,
i.e., w ∈ Wk+1, we have L(k+1)(θk+1, θ0) = ρk+1. Here, it is
worth remarking that wk+1,� is independent of the column
vectors of Vk+1 (i.e., [Vk+1 wk+1,�] has full column rank),
and otherwise, we have wk+1,� ∈ Vk+1 and wH

k+1,�a(θ0) = 0
as well as wH

k+1,�a(θk+1) = 0.
Suppose that in the kth step, the weight vector is wk,�, and

we have obtained M weight vectors, which can independently
adjust the normalized power responses at M directions to their
prescribed values by using the A2RC algorithm, that is

wk+1,m = wk,� + μk+1,ma(θk+1,m), m = 1, . . . , M. (12)

Fig. 2. Illustration of Wk+1,1∩Wk+1,2.

where μk+1,m and wk+1,m are computed with the A2RC
algorithm according to the corresponding response level as
follows:

L(θk+1,m , θ0) =
∣
∣wH

k+1,ma(θk+1,m)
∣
∣
2

∣
∣wH

k+1,ma(θ0)
∣
∣2

= ρk+1,m . (13)

It should be emphasized that the response at each direction
has to be controlled by an independent weight vector. This
motivates us to tackle an interesting problem of obtaining a
unique weight vector, which is able to simultaneously control
the responses at those M directions. In other words, we should
find an appropriate weight vector wk+1 satisfying

L(θk+1,m , θ0) =
∣
∣wH

k+1a(θk+1,m)
∣
∣2

∣
∣wH

k+1a(θ0)
∣
∣2

= ρk+1,m (14)

for m = 1, . . . , M .
From the analysis at the beginning of this section, it is

known that given any w ∈ Wk+1,m , we have L(θk+1,m, θ0) =
ρk+1,m , where Wk+1,m is similarly defined as (11). More
exactly, we have

Wk+1,m = R([Vk+1,m wk+1,m ]) \ Vk+1,m (15)

where Vk+1,m = R(Vk+1,m) = R⊥(A(θ0, θk+1,m)). There-
fore, the weight vector wk+1, making the M constraints
in (14) satisfied, lies in the intersection of the M sets Wk+1,m ,
m = 1, . . . , M . This can be expressed as

wk+1 ∈ M �
M
⋂

m=1

Wk+1,m (16)

where
⋂

denotes set intersection. To have an intuitive perspec-
tive on the above descriptions, Fig. 2 shows the formation
of R([Vk+1,m wk+1,m ]) and Vk+1,m , and further shows the
intersection of Wk+1,1 and Wk+1,2 visually.

In order to obtain an analytical expression of wk+1 in (16),
the bases of R([Vk+1,m wk+1,m ]) and Vk+1,m should be given.
To this end, let us first denote the singular value decomposition
of Am as

A(θ0, θk+1,m) = Um�mVH
m (17)
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where Um ∈ CN×N and Vm ∈ C2×2 are unitary matrices.
Um is further partitioned into submatrices Um1 ∈ CN×2 and
Um2 ∈ CN× (N−2) composed of the first two and remaining
columns of Um as follows:

Um =
⎡

⎢
⎣u1 u2
︸ ︷︷ ︸

Um1

u3 · · · uN
︸ ︷︷ ︸

Um2

⎤

⎥
⎦ . (18)

According to the linear algebra theory [25], it is known that
A(θ0, θk+1,m) and Um1 span the same range space, which is
equal to the orthogonal complement of range space of Um2.
More specifically, we have

R(Um1) = R(A(θ0, θk+1,m)) = R⊥(Um2). (19)

Hence, we have Vk+1,m = R⊥(A(θ0, θk+1,m)) = R(Um2),
which can be equivalently expressed as

Vk+1,m = {v|v = Um2bm , bm ∈ C
N−2} (20)

where bm is a vector of coefficients.
With the equalities in (19) and the definition of Vk+1,m ,

we can straightforwardly set Vk+1,m = Um2. To proceed, let
us define Hm as

Hm � [Um2 wk+1,m ] ∈ C
N×(N−1) (21)

then we have

R(Hm) = R([Vk+1,m wk+1,m])
= {

v
∣
∣v = Hm

[

bT
m cm

]T }
. (22)

Clearly, if cm = 0, then R(Hm) degenerates to Vk+1,m . From
the expression of Wk+1,m in (15), one gets

Wk+1,m = {

v
∣
∣v = Hm

[

bT
m cm

]T , cm �= 0
}

(23)

where the condition cm �= 0 guarantees that the associated
vector does not lie in the set Vk+1,m .

From the above-mentioned analysis, we know that the
problem of finding a weight vector wk+1 ∈ M as in (16)
can be interpreted as finding a series of coefficient vectors
[bT

m cm ]T , m = 1, . . . , M , which satisfy

H1
[

bT
1 c1

]T = H2
[

bT
2 c2

]T = · · · = HM
[

bT
M cM

]T (24)

where cm �= 0, m = 1, . . . , M . The weight vector wk+1 in the
set M is thus given by

wk+1 = H1

[

b̄1
c̄1

]

= H2

[

b̄2
c̄2

]

= · · · = HM

[

b̄M

c̄M

]

(25)

where [b̄T
m c̄m]T , m = 1, 2, . . . , M , denotes the solution

to (24). In fact, any wk+1 satisfying (25) can be expressed
as

wk+1 = c̄1[U12 wk+1,1]
[

b̃1
1

]

(26a)

s.t. F̃b1 = −q, c̄1 �= 0 (26b)

Algorithm 1 MA2RC Algorithm
1: give the previous weight vector wk,�, θk+1,m and the

corresponding desired level ρk+1,m , m = 1, 2, . . . , M
2: for m = 1, 2, . . . , M do
3: calculate μk+1,m by solving (6) such that

L(θk+1,m, θ0) = ρk+1,m

4: obtain wk+1,m = wk,� + μk+1,ma(θk+1,m)
5: carry out SVD of A(θ0, θk+1) to obtain Um2
6: denote Hm = [Um2 wk+1,m ]
7: end for
8: obtain F and q as (27) and (28), respectively
9: obtain wk+1 = c̄1H1[(−F†q + fn)T 1]T , where c̄1 �= 0 and

fn can be any vectors in N (F)

where F and q are given by

F =

⎡

⎢
⎢
⎢
⎣

(

IN − H2H†
2

)

U12
(

IN − H3H†
3

)

U12
...

(

IN − HM H†
M

)

U12

⎤

⎥
⎥
⎥
⎦

∈ CN(M−1)× (N−2) (27)

q =

⎡

⎢
⎢
⎢
⎣

(

IN − H2H†
2

)

wk+1,1
(

IN − H3H†
3

)

wk+1,1
...

(

IN − HMH†
M

)

wk+1,1

⎤

⎥
⎥
⎥
⎦

∈ CN(M−1) (28)

where † denotes the pseudoinverse of a matrix. More-
over, by solving the constraint in (26) provided that
wH

k+1,ma(θ0) �= 0, m = 1, 2 . . . , M , and a(θ0),
a(θk+1,1), . . . , a(θk+1,M ) are linearly independent, we can
further rewrite wk+1 as

wk+1 = c̄1H1

[−F†q + fn

1

]

, c̄1 �= 0 ∀fn ∈ N (F) (29)

where N (·) represents the null space. The derivations
of (26)–(29) are somewhat involved and the details can be
found in Appendix A. Finally, the proposed MA2RC method
is summarized in Algorithm 1.

Remark 1: In order to make (24) solvable, a(θ0),
a(θk+1,1), . . . , a(θk+1,M ) must be linearly independent.
We can infer that at most N − 1 points can be accurately
controlled.

B. M2A2RC Algorithm

In Section III-A, the MA2RC method has been presented
to simultaneously and accurately control the array responses
at multiple directions. Note that this method may lead to
possible shift of the beam axis. In other words, suppose θ0
is the direction of desired beam axis, the maximum value of
pattern corresponds to wk+1 in (29), which may ultimately
appear in another direction θp rather than θ0. Similar to many
conventional methods, this issue is not sufficiently considered
in the MA2RC method. To tackle this problem, an M2A2RC
algorithm is proposed in this section by imposing an extra
derivative constraint as adopted in [23] and [24].
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More specifically, the derivative constraint is expressed as

∂ P(θ)

∂θ

∣
∣
∣
∣
θ=θ0

= 0 (30)

where P(θ) = wH a(θ)aH (θ)w denotes the array power
response, and θ0 is the direction of desired beam axis.
Substitute the expression of P(θ) into (30), we have

∂ P(θ)

∂θ
= wH ∂a(θ)

∂θ
aH (θ)w + wH a(θ)

∂aH (θ)

∂θ
w

= 2Re

[

wH ∂a(θ)

∂θ
aH (θ)w

]

. (31)

Define

d(θ0) � ∂a(θ)

∂θ

∣
∣
∣
θ=θ0

(32)

then, from (31), we have

∂ P(θ)

∂θ

∣
∣
∣
∣
θ=θ0

= 2Re[wH d(θ0)aH (θ0)w]. (33)

Therefore, the problem of multipoint response control with a
derivative constraint in (30) can be formulated as

find w̃k+1 ∈ M ∩ D (34)

where M is defined as in (16), D is a set, which is given by

D = {w|Re[wH d(θ0)aH (θ0)w] = 0}. (35)

It can be noticed that the weight vector, which can simultane-
ously control the responses at multiple direction without beam
axis shift, lies in the intersection of M and D.

From Section III-A, we know that any w in M (i.e., weight
vectors being able to precisely control array responses of
multiple directions) can be expressed as

w = c1[U12 wk+1,1]
[

b̃T
1 1

]T (36a)

s.t. F̃b1 = −q, c1 �= 0. (36b)

To guarantee that w locates in D, the following equality has
to be satisfied:

Re[(U12b̃1 + wk+1,1)
H d(θ0)aH (θ0)(U12b̃1 + wk+1,1)] = 0.

(37)

Owing to the fact that aH (θ0)U12 = 0 as shown in (19),
the equality in (37) can be simplified as

Re
[

b̃H
1 p
] = βr (38)

where

p = UH
12d(θ0)aH (θ0)wk+1,1∈ C

N−2 (39)

βr = −Re
[

wH
k+1,1d(θ0)aH (θ0)wk+1,1

]

. (40)

Consequently, the problem of multipoint response control
without beam axis shift, i.e., (34), can be reformulated as

find w̃k+1 = c1[U12 wk+1,1]
[

b̃T
1 1

]T (41a)

s.t. F̃b1 = −q, c1 �= 0, Re
[

b̃H
1 p
] = βr . (41b)

Algorithm 2 M2A2RC Algorithm
1: give the previous weight vector wk,�, θk+1,m and the

corresponding desired level ρk+1,m , m = 1, 2, . . . , M
2: for m = 1, 2, . . . , M do
3: calculate μk+1,m by solving (6) such that

L(θk+1,m, θ0) = ρk+1,m

4: obtain wk+1,m = wk,� + μk+1,ma(θk+1,m)
5: carry out SVD of A(θ0, θk+1) to obtain Um2
6: denote Hm = [Um2 wk+1,m ]
7: end for
8: obtain F and q as (27) and (28), respectively
9: calculate d(θ0) as (32)

10: obtain C, k and � as (49), (50) and (53), respectively
11: obtain w̃k+1 = c1[� wk+1,1][(C†k+zn)T 1]T , where c1 �=

0 and zn can be any vectors in N (C)

The constraint (41b) involves real part operation; therefore,
it is more suitable to transform (41b) to real domain. To this
end, we define

Y �
[

Re(F) −Im(F)
Im(F) Re(F)

]

∈ R
2N(M−1)×2(N−2) (42)

z �
[

Re
(

b̃T
1

)

Im
(

b̃T
1

)]T ∈ R
2(N−2) (43)

r � [−Re(qT ) − Im(qT )]T ∈ R
2N(M−1) (44)

f � [Re(pT ) Im(pT )]T ∈ R
2(N−2). (45)

Obviously, we have

F̃b1 = −q ⇔ Yz = r (46)

Re
[

b̃H
1 p
] = βr ⇔ fT z = βr (47)

where ⇔ is the notation of equivalence. Then, the constraint
on z (equivalently on b̃1) can be summarized as

Cz = k (48)

where

C = [YT f]T ∈ R
(2N(M−1)+1)×2(N−2) (49)

k = [rT βr ]T ∈ R
2N(M−1)+1. (50)

In fact, under the condition that wH
k+1,ma(θ0) �= 0 for

m = 1, 2, . . . , M , and a(θ0), a(θk+1,1), . . . , a(θk+1,M ), d(θ0)
are linearly independent, we can conclude that (48) is con-
sistent (see Appendix B for details), and thus, its generalized
form can be expressed as

z = C†k + zn ∀zn ∈ N (C). (51)

Consequently, the weight vector, which has a derivative con-
straint, can be expressed in (52) on the bottom of the next
page, where

� � [U12 jU12]∈ C
N×2(N−2) . (53)

Finally, the M2A2RC method is summarized in Algorithm 2.
Remark 2: Since an additional derivative constraint is

imposed in the M2A2RC algorithm, from Remark 1, it is
known that at most N − 2 points can be controlled.
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IV. APPLICATION OF M2A2RC TO PATTERN SYNTHESIS

In Section III, the MA2RC and M2A2RC algorithms have
been developed. In what follows, the M2A2RC algorithm is
directly applied to synthesize patterns for arbitrary arrays,
without causing beam axis shift. The proposed method
herein shares a similar concept of pattern synthesis using
A2RC in [22], however, significantly reduces the number
of iterations. Specifically, multiple directions are first deter-
mined according to the current pattern and desired pattern
[denoted by Ld (θ)]. These angles can be in either sidelobe
region or mainlobe region. For sidelobe synthesis, we deter-
mine the peak angles where the responses are higher than the
desired levels. For mainlobe synthesis, some discrete angles
where the responses deviate large from the desired ones are
chosen. The details of angle determination can be found
in [22]. Once those angles are selected, the M2A2RC algorithm
is applied to adjust the corresponding responses to the desired
values. This step is repeated until the response is satisfactorily
synthesized. Note that in each step, the beam axis is unchanged
owing to the extra derivative constraint (30).

Before further giving the detailed description of M2A2RC-
based pattern synthesis method, the weight vector of M2A2RC
[i.e., w̃k+1 in (52)] is further investigated.

First of all, since c1 in (52) does not affect the beam pattern,
we set c1 = 1 for simplicity and further write w̃k+1 as

w̃k+1 = [� wk+1,1][(C†k + zn)
T 1]T (54)

where zn must be in N (C). Additionally, wk+1,1 in (54) is
obtained from A2RC by

wk+1,1 = w̃k,� + μk+1,1a(θk+1,1) (55)

where w̃k,� denotes the optimal weight vector of M2A2RC in
the kth step. Note that there are infinitely many w̃k+1 values
in (54), the optimal one w̃k+1,� should be determined.

From the earlier discussion [see also (6) and (54)], w̃k+1,�

should be obtained by solving the following problem:

min
w̃k+1

∥
∥P⊥̃

wk,�
w̃k+1

∥
∥2

2 (56a)

s.t. w̃k+1 = [� wk+1,1]
[

C†k + zn

1

]

(56b)

where P⊥̃
wk,�

means the projection matrix into R⊥(w̃k,�) as

P⊥̃
wk,�

= I − w̃k,�w̃H
k,�

w̃H
k,�w̃k,�

∈ C
N×N . (57)

It can be found from (54) that the essential variable of w̃k+1
is zn , and the optimal zn (denoted as zn,�) can be further
obtained by (58) on the bottom of this page, where zd , C, T,
and zr are given by

zd = P⊥̃
wk,�

�C†k + μk+1,1P⊥̃
wk,�

a(θk+1,1)∈ C
N (59)

C = Uc�cVH
c = Uc�c[Vcr Vcn]H (60)

T =
[

Re
(

P⊥̃
wk,�

�Vcn
)

Im
(

P⊥̃
wk,�

�Vcn
)

]

∈ R
2N× (2(N−2)−rc) (61)

zr = [

Re
(

zT
d

)

Im
(

zT
d

)]T ∈ R
2N . (62)

Note that basis{·} in (58d) returns the basis vectors of a
subspace. Moreover, the following important conclusion has
been utilized in (58e), that is:

basis{N (C)} = Vcn∈ R
2(N−2)×(2(N−2)−rc) (63)

where Vcn is constructed by the last 2(N −2)−rc columns of
Vc in (60), with rc denoting the rank of C. Note also that (58e)
is a real least squares minimization problem [26], which can be
solved by (58f). As a result, the optimal weight vector w̃k+1,�

can be expressed as

w̃k+1,� = [� wk+1,1][(C†k + zn,�)
T 1]T

= �C†k − �VcnT†zr + wk+1,1. (64)

w̃k+1 = c1[U12 wk+1,1]
[

b̃T
1 1

]T = c1Re(U12) + j Im(U12) − Im(U12) + jRe(U12) wk+1,1][zT 1]T

= c1[� wk+1,1][(C†k + zn)T 1]T , c1 �= 0 ∀zn ∈ N (C) (52)

zn,� = arg min
zn∈N (C)

∥
∥P⊥̃

wk,�
{[� wk+1,1][(C†k + zn)

T 1]T }∥∥2
2 (58a)

= arg min
zn∈N (C)

∥
∥P⊥̃

wk,�
{[� w̃k,� + μk+1,1a(θk+1,1)][(C†k + zn)

T 1]T }∥∥2
2 (58b)

= arg min
zn∈N (C)

∥
∥
∥
∥
∥
∥
∥

P⊥̃
wk,�

�zn + P⊥̃
wk,�

�C†k + μk+1,1P⊥̃
wk,�

a(θk+1,1)
︸ ︷︷ ︸

zd

∥
∥
∥
∥
∥
∥
∥

2

2

(58c)

= [basis{N (C)}] · arg min
czn

∥
∥
∥
∥
∥
∥
∥

P⊥̃
wk,�

� [basis{N (C)}]czn
︸ ︷︷ ︸

zn

+zd

∥
∥
∥
∥
∥
∥
∥

2

2

(58d)

= Vcn · arg min
czn

‖Tczn + zr‖2
2 (58e)

= −VcnT†zr (58f)
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TABLE I

SUMMARY OF THE M2A2RC-BASED PATTERN SYNTHESIS

The M2A2RC-based pattern synthesis method is summarized
in Table I, and a brief comparison of the A2RC, MA2RC, and
M2A2RC algorithms is summarized in Table II.

V. NUMERICAL RESULTS

In this section, the effectiveness of MA2RC and M2A2RC
for multipoint control is first shown. Then, representative
numerical examples are carried out to demonstrate the supe-
riority of M2A2RC in pattern synthesis under different
situations. We set a(θ0) as the initial weight vector in all
simulations.

A. Illustration of MA2RC and M2A2RC

In this section, we consider a ten-element nonisotropic and
nonuniformly spaced linear array, which has been used in the
literature, such as [17], [21], and [22]. The pattern of the nth
element is given by

gn(θ) = cos [πlnsin(θ + ζn)] − cos(πln)

cos(θ + ζn)
(65)

where ζn and ln represent the orientation and length of
the element. More descriptions of the array can be found
in Table III, where xn denotes the position of the nth element.
We choose that θ0 = 0°. Three angles, i.e., −45°, −20°,
and −6°, where the response levels are to be adjusted, are
considered. The desired levels are −10, −20, and −6 dB,
respectively. Note that the first two angles are in the sidelobe
region, while the third one locates in the mainlobe region.

Fig. 3 shows the synthesized patterns of MA2RC using (29)
and M2A2RC using (52). Without loss of generality, fn and zn

are set to be zero. Clearly, it is seen that both these two
methods simultaneously adjust the responses at the given
directions to their desired levels. However, the beam axis
obtained from MA2RC is approximately shifted by 0.2°, while
the M2A2RC method obtains its maximum response level
exactly at θ0 = 0°. In summary, the simulation result in Fig. 3
validates the effectiveness of MA2RC to adjust response levels
at multiple directions in both the sidelobe region and the
mainlobe region. Moreover, the capability of M2A2RC to
avoid beam axis shift is demonstrated.

Fig. 3. Simulation results of multipoint responses control for a nonisotropic
nonuniform random array.

B. Pattern Synthesis Using M2A2RC

In this section, numerical results are presented to validate
the applicability and illustrate the performance of the proposed
M2A2RC approach in pattern synthesis. First, a uniformly
spaced linear array is considered to synthesize a pattern with
nonuniform sidelobe. Next, an example of designing equal
sidelobe levels of a sparse nonuniformly spaced linear array is
provided. Finally, we design a desired pattern for a conformal
circular arc array with polarization and mutual coupling.
Results obtained by different approaches, including Philip’s
method [18] and A2RC method [22], are given for comparison.

1) Isotropic Linear Array with Nonuniform Sidelobe: In the
first example, a linearly half-wavelength-spaced array with
21 isotropic elements is considered. The desired sidelobe level
is assumed to be nonuniform (i.e., varies with the direction θ ).
The beam axis is assumed to be θ0 = 50°. The number of
angles to be adjusted in every step is the same, and denoted as
M for ease of illustration. Fig. 4(a)–(c) shows the synthesized
patterns at different steps.

At the first step, we find out all locations of the sidelobe
peaks (denoted as θ1,m , m = 1, . . . , M) from the initial pattern
by utilizing the initial weight a(θ0), and then, the desired
levels ρ1,m can be calculated from Ld(θ1,m). On this basis,
the M2A2RC algorithm is applied to determine the weight
vector w̃1,� according to (64). w̃1,�, as discussed previously,
can adjust all response levels at θ1,m to their desired values
Ld(θ1,m), without beam axis shift. The resultant pattern is
shown in Fig. 4(b). It is seen that all responses at θ1,m are
exactly equal to the corresponding desired values Ld (θ1,m).
It should be noticed that the resultant pattern may not have
peaks at θ1,m , m = 1, . . . , M .

At the second step, the locations of the sidelobe peak (of the
resultant pattern after the first step) are determined. The angles
are designated as θ2,m , m = 1, 2, . . . , M . By applying the
proposed M2A2RC method, the desired weight vector w̃2,� is
determined and the corresponding responses at all θ2,m have
been accurately controlled to their desired levels Ld (θ2,m),
as shown in Fig. 4(b). Noticed that the responses at θ1,m are
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TABLE II

BRIEF COMPARISON OF A2RC, MA2RC, AND M2A2RC ALGORITHMS

TABLE III

PARAMETERS OF THE NONISOTROPIC LINEAR RANDOM ARRAY

nearly unchanged, and moreover, the beam axis is still θ0 at
this step.

The above process is repeated until the pattern is sufficiently
close to the desired pattern. It is found from the examples
considered; only three steps are needed to synthesize the
desired pattern. It can be noticed from Fig. 4(c) that after
three steps, all sidelobe levels are very close to the desired
level. The resultant weightings are listed in Table IV.

The result comparison is displayed in Fig. 5. It is observed
from the sidelobe pattern that Philip’s method is outperformed
by the A2RC and M2A2RC approaches. For instance, the cor-
responding levels for Philip’s method at −52° and −43° are
about 1 dB higher than their respective desired values. Both
the A2RC and M2A2RC approaches perform similarly at the
sidelobe and produce response patterns that are sufficiently
close to the desired one. It should be noticed that, at the
mainlobe region, both Philip’s method and A2RC method lead
to beam axis shift. On the contrary, the M2A2RC method suc-
cessfully synthesizes a pattern whose maximum level exactly
locates at θ0. This coincides with the theoretical analysis that
the M2A2RC method can synthesize a pattern without beam
axis shift.

To further examine the performance of M2A2RC, some
measurements are listed in Table V, where T stands for the
overall time of implementing, R means the iteration num-
ber, and |d(θ0)| measures the derivative of resultant pattern
at the θ0. In addition, θmax and L(θmax, θ0) in Table V
give the maximum location and its normalized level of
the synthesized pattern. It can be seen that the proposed
M2A2RC-based pattern synthesis method converges much
faster with considerately less steps than other methods. Fur-
thermore, the maximum location of the synthesized pattern is
ensured to be exactly at the desired beam axis θ0.

TABLE IV

WEIGHTS OBTAINED BY THE PROPOSED METHOD FOR

AN ISOTROPIC LINEAR ARRAY

TABLE V

MEASUREMENT COMPARISON OF DIFFERENT APPROACHES

To examine the robustness of the M2A2RC approach, we
reduce the effective digits of weightings in Table IV and
test the variations of corresponding patterns. More specially,
the weightings (including amplitude and phase) are rounded
up to the second decimal place and the first decimal place,
respectively. The obtained patterns are displayed in Fig. 6.

It can be noticed that, if the weightings are accurate to
the second decimal place, the resulting pattern is almost the
same as the full precision one. When the weightings are accu-
rate to the first decimal place, certain minor differences are
observed between the obtained pattern and the full precision
one. Nevertheless, in general, the shape of the former can be
maintained. Hence, a percentile precision of the weighting is
a good candidate to balance the accuracy and complexity of a
practical array system.

2) Sparse Array With Uniform Sidelobe: The second exam-
ple considers a 12-element sparse symmetrical nonuniformly
spaced linear array. The specific element positions are given
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Fig. 4. Simulation results of pattern synthesis of uniform sidelobe.
(a) Synthesized beampattern at the first step. (b) Synthesized beampattern
at the second step. (c) Synthesized beampattern at the third step.

in Table VI. The beam axis is assumed to be θ0 = 0°,
and the response of the sidelobe is required to be no larger
than −25 dB. For this sparse array configuration, the number

Fig. 5. Comparison of the beampatterns of different approaches.

Fig. 6. Comparison of the beampatterns with different precisions of weights.

TABLE VI

ELEMENT LOCATIONS OF THE SPARSE ARRAY AND RESULTED
WEIGHTS OF THE PROPOSED METHOD

of sidelobe peak of initial pattern is more than the maximum
number of controllable points (i.e., N − 2 as mentioned in
Remark 2). Nevertheless, by suitably selecting ten angles
being adjusted in every iteration, a desirable pattern, as shown
in Fig. 7, can be obtained after carrying out a two-step’s
response control. It can be seen from Fig. 7 that the M2A2RC
approach performs better than both Philip’s method and A2RC
method. The obtained weightings are listed in Table VI. Inter-
estingly, it is found that the weights are real and centrosym-
metric. A possible explanation is that the desired beam axis is
set as 0° and the sparse array utilized is centrosymmetric.
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Fig. 7. Uniform sidelobe pattern using a sparse linear array.

Fig. 8. Illustration of a circular arc array.

Fig. 9. Synthesized patterns for a circular arc array.

3) Conformal Array with Polarization and Mutual
Coupling: In order to demonstrate the wide applicability of
the proposed approach, an example of pattern synthesis for
a circular arc array that conforms to a cylindrical surface,
as shown in Fig. 8, is considered. The element number is 16,

and a distance between adjacent elements is half a wavelength.
θc in Fig. 8 is set as 60° and the desired pattern is steered at
θ0 = 10° with a uniform sidelobe level lower than −35 dB.
Both the element polarized pattern and mutual coupling effect
are considered. More precisely, the element pattern used in
simulation is the lowest order circular patch model [27]–[29],
and the beam pattern is analytically expressed as described
in [30]. The mutual coupling model in [31] is adopted by
reasonably assuming that the electromagnetic coupling only
occurs between adjacent channels. We set the adjacent channel
isolation (i.e., β in [31]) as −20 dB and only consider the
pattern that is coplanar to the array plane. Note that extensions
to other more complicated models are straightforward. Fig. 9
shows the resulting patterns of different approaches. It can
be observed that the proposed M2A2RC method is capable of
synthesizing a more satisfactory pattern in this case.

VI. CONCLUSION

In this paper, the issue of simultaneously controlling multi-
point array responses is considered, two novel algorithms are
successively devised on the basis of A2RC approach. The set
of the weight vectors for a single point response control using
the A2RC method is first derived. Then, we propose to achieve
multipoint response control by designing an intersection of
several weight vector sets. By finding the analytical expression
of the intersection, the weight vector, which simultaneously
adjusts the response levels to desired values, can be formu-
lated. This establishes the MA2RC approach. Furthermore,
in order to avoid possible beam axis shift in the MA2RC
method, modified MA2RC (i.e., M2A2RC) is devised by intro-
ducing a derivative constraint. The application of the M2A2RC
algorithm for pattern synthesis is also discussed. Various
examples with different problem settings have been carried
out to demonstrate the effectiveness, robustness, as well as
wide applicability of the M2A2RC approach. As a future work,
we shall consider the extension of the proposed approaches to
synthesize array patterns under nonideal circumstances.

APPENDIX A
DERIVATIONS OF (26)–(29)

Since Hm has full column rank, from (24), we have
[

bT
m cm

]T = H†
mH1

[

bT
1 c1

]T (66)

where m = 2, . . . , M and H†
m = (HH

m Hm)−1HH
m . Substituting

(66) into (24) yields

H1
[

bT
1 c1

]T = HmH†
mH1

[

bT
1 c1

]T (67)

which can also be expressed as
(

IN − HmH†
m

)

H1
[

bT
1 c1

]T = 0 (68)

where m = 2, . . . , M . Obviously, the M − 1 equations in (68)
can be compactly expressed as

G
[

bT
1 c1

]T = 0 (69)
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where G is defined as

G �

⎡

⎢
⎢
⎢
⎣

(

IN − H2H†
2

)

H1
(

IN − H3H†
3

)

H1
...

(

IN − HM H†
M

)

H1

⎤

⎥
⎥
⎥
⎦

∈ C
((M−1)N)×(N−1). (70)

Recalling in (24) that c1 is nonzero, the problem of the
determination of b1 and c1 can be expressed as

find
[

bT
1 c1

]T ∈ C
N−1

s.t. G
[

bT
1 c1

]T = 0c1 �= 0 (71)

which can be equivalently written as

find b̃ ∈ C
N−2

s.t. G
[

b̃T
1 1

]T = 0 (72)

where b̃ = b1/c1 is a new variable to be determined. To get
the analytical expression of (72), we first split G as

G = [F q]. (73)

Obviously, F represents the first (N − 2) columns of G and q
is the last column of G. Then, the constraint in (72) can be
equivalently expressed as

F̃b1 = −q. (74)

This completes the proof of (26)–(28). To proceed, the follow-
ing three steps are needed to ensure the consistency of (74).

Step 1: For any given m ∈ {2, . . . , M}, IN − (HmH†
m) is

actually the projection matrix onto the orthogonal complement
space of R(Hm), so we have

R(IN − (

HmH†
m

)) = R(hm) (75)

where hm is the basis of R⊥(Hm). According to (75), there
must exist an elementary matrix Em such that

[

IN − (

HmH†
m

)]

Em = [hm O] (76)

which can also be expressed as

EH
m

[

IN − (

HmH†
m

)] =
[

hH
m

O

]

(77)

due to the fact that IN − (HmH†
m) is Hermitian.

Combining (77) and the expression of G, we learn that

EG = H̃H1, EF = H̃U12 (78)

where

E �

⎡

⎢
⎢
⎢
⎣

EH
2

EH
3

. . .

EH
M

⎤

⎥
⎥
⎥
⎦

, H̃ �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

hH
2

O

)

(

hH
3

O

)

...
(

hH
M

O

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (79)

Note that Em is invertible for m = 2, . . . , M , then we know
that E is also invertible; therefore, we obtain

rank(F) = rank(EF) = rank(H̃U12) = rank(HU12) (80)

where H is defined as

H � [h2 h3 · · · hM ]H . (81)

At the same time, we can readily conclude that the following
four equations are actually equivalent:

Gx = 0 (82a)

EGx = 0 (82b)

H̃H1x = 0 (82c)

HH1x = 0. (82d)

Therefore, we have

F̃b1 = −q ⇔ G
[

b̃T
1 1

]T = 0

⇔ HH1
[

b̃T
1 1

]T = 0

⇔ HU12b̃ = −Hwk+1,1. (83)

Step 2: In this step, we will formulate an equivalent version
of HU12. Before this derivation, it is necessary to make a deep
analysis on hm .

For a specific m ∈ {2, . . . , M}, we know that hm represents
the basis vector of R⊥(Hm). Equivalently, hm satisfies

{

hm ∈ R⊥(Hm)

hm �= 0.
(84)

Hm = [Um2 wk+1,m ] has full column rank, and R⊥(Um2) =
R(A(θ0, θk+1,m)), so we obtain

hm ∈ R⊥(Hm) ⇔
{

hm ∈ R⊥(Um2)

hm ∈ R⊥(wk+1,m)

⇔
{

hm ∈ R(A(θ0, θk+1,m))

wH
k+1,mhm = 0.

(85)

Consequently, an equivalent version of (84) is

hm = [a(θ0) a(θk+1,m)][κ0 κm ]T (86)

s.t. wH
k+1,m [a(θ0) a(θk+1,m)]

[

κ0
κm

]

= 0 (87)

κm �= 0 (88)

where κ0 and κm are complex numbers satisfying
(87) and (88). Here, in the scenario that κm = 0, we infer
from (87) that κ0wH

k+1,ma(θ0) = 0. Because wH
k+1,ma(θ0) is

nonzero, so we have κ0 = κm = 0 in this case, and thus,
hm = 0, which is forbidden in (84). Therefore, the constraint
κm �= 0 has been considered earlier.

Above all, hm can be expressed as a linear combination
of a(θ0) and a(θk+1,m) with the associated coefficients satis-
fying specific constraints.

Now, we come to analyze rank(HU12). With the expression
of hm in (86), hH

m U12 satisfies

hH
m U12 = [

κ∗
0 κ∗

m

]
[

aH (θ0)U12
aH (θk+1,m)U12

]

= [

κ∗
0 κ∗

m

]
[

0T

aH (θk+1,m)U12

]

(89)

= κ∗
maH (θk+1,m)U12, κm �= 0. (90)
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Note that in (89), a fact aH (θ0)U12 = 0T has been used.
More importantly, from (90), we find that hH

m U12 is involved
with κm and has no relationship with κ0, so that constraints
on κ0 are insignificant and there is only one constraint κm �=
0 associated with hH

m U12. Substituting hH
m U12 into the rows

of HU12 gives that

HU12 = KAH
2,3,...,M U12 (91)

where K = diag([κ∗
2 , κ∗

3 , . . . , κ∗
M ]) has full rank with κm �= 0,

A2,3,...,M = [a(θk+1,2) a(θk+1,3) · · · a(θk+1,M )].
Step 3: In this step, we will proof that AH

2,3,...,M U12 has full
row rank, that is

rank
(

AH
2,3,...,M U12

) = M − 1. (92)

To this end, we first assume that rank(AH
2,3,...,M U12) < M −1,

i.e., AH
2,3,...,M U12 has dependent rows, and in this case, there

must exist a nonzero vector c = [η2 η3 · · · ηM ]T such that

cT AH
2,3,...,M U12 = cT

⎡

⎢
⎢
⎢
⎣

aH (θk+1,2)U12
aH (θk+1,3)U12

...
aH (θk+1,M )U12

⎤

⎥
⎥
⎥
⎦

= 0T . (93)

Equation (93) shows that

A2,3,...,M c∗ ∈ R⊥(U12) = R(A(θ0, θk+1,1)) (94)

so we can denote

A2,3,...,M c∗ = A(θ0, θk+1,1)[η0 η1]T (95)

where [η0 η1]T is the associated coefficient vector whose
specific value is not necessarily known for us. From (95),
we learn that there must exist a nonzero vector c̃ = [η0 η1 −
η∗

2 − η∗
3 · · · − η∗

M ]T such that

[a(θ0) a(θk+1,1) · · · a(θk+1,M )]̃c = 0 (96)

which is contradicted against the condition that a(θ0),
a(θk+1,1), . . . , a(θk+1,M ) are linearly independent. There-
fore, rank(AH

2,3,...,M U12) < M − 1 can never be true
and rank(AH

2,3,...,M U12) = M − 1 is established owing to
AH

2,3,...,M U12 has M − 1 rows.
Combining Steps 2 and 3, we conclude

rank(HU12) = rank
(

AH
2,3,...,M U12

) = M − 1 (97)

or in other words, HU12 has full row rank. Furthermore,
recalling (83) in Step 1, we learn that the columns of HU12
span CM−1 and every −Hwk+1,1 ∈ CM−1 must be located
in R(HU12). Thus, HU12b̃ = −Hwk+1,1 has at least one
solution, either does the equation F̃b1 = −q. Therefore, all
solutions to F̃b1 = −q can be expressed as [26]

b̃1 = −F†q + fn ∀fn ∈ N (F). (98)

From the equivalence of (71) and (72), the solution [b̄T
1 c̄1]T

to (71) can thus expressed as

[b̄T
1 c̄1]T = c1

[−F†q + fn

1

]

, c1 �= 0 ∀fn ∈ N (F). (99)

Consequently, wk+1 in (25) can be expressed as

wk+1 = c̄1H1

[−F†q + fn

1

]

, c̄1 �= 0 ∀fn ∈ N (F). (100)

It is worth mentioning that the above expression of wk+1
ensures c̄1 �= 0, which further indicates that wk+1 /∈ Vk+1,1
and L(θk+1,1, θ0) = ρk+1,1. However, it cannot ensure the
nonzero property of c̄m for m = 2, . . . , M . Therefore, it seems
uncertain whether wk+1 in (29) may locate in the subspace
Vk+1,m for m = 2, . . . , M . Fortunately, we can infer that

c̄m �= 0, for m = 2, . . . , M (101)

as long as wH
k+1,1a(θ0) �= 0. This is because if existing m ∈

{2, . . . , M}, such that c̄m = 0, and from (25), we can infer
that

H1
[

b̄T
1 c̄1

]T = Um2b̄m (102)

from which we can further obtain

wk+1,1 = [U12 Um2]
[− b̄T

1

/

c̄1 b̄T
m

/

c̄1
]T . (103)

The expression in (103) indicates that wk+1,1 can be expressed
as a linear combination of the columns of [U12 Um2]. On the
other hand, from (19), we have learned that a(θ0) is perpen-
dicular to the columns of [U12 Um2], that is

aH (θ0)[U12 Um2] = 0. (104)

Combining (103) and (104), we further gets wH
k+1,1a(θ0) = 0,

which is contradicted against the assumption that
wH

k+1,1a(θ0) �= 0. Therefore, we know that c̄m = 0
cannot be established for any m ∈ {2, . . . , M}.

Above all, wk+1 in (25) is analytically expressed as (100).
This completes the proof of (29).

APPENDIX B
PROOF OF THE CONSISTENCY OF (48)

We first choose to proof that HdU12 has full row rank, where
Hd is defined as

Hd � [h2 h3 · · · hM d(θ0)]H . (105)

From (91), we know that

HdU12 = Kd

⎡

⎢
⎢
⎢
⎣

aH (θ2)
...

aH (θM)
dH (θ0)

⎤

⎥
⎥
⎥
⎦

U12, Kd =
[

K
1

]

(106)

where K has been described in (91). A brief analysis results
that Kd has full rank.

Similar to the proof detail of Step 3 in Appendix A, the
reduction to absurdity approach can be utilized to demonstrate
that HdU12 has full row rank, that is

rank(HdU12) = M (107)

on the premise that a(θ0), a(θk+1,1), . . . , a(θk+1,M ), d(θ0) are
linearly independent. Here, we omit the derivation details due
to space limitation.
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Then, from Step 1 in Appendix A, we learn that

rank

([

F
dH (θ0)U12

])

= rank

([

E

1

][

F
dH (θ0)U12

])

= rank

([

H̃U12
dH (θ0)U12

])

= rank(HdU12) = M. (108)

In other words, we obtain that [FH UH
12d(θ0)]H

has full row rank. Moreover, it can be inferred that
[FH a(θ0)H wk+1,1UH

12d(θ0)]H has full row rank as long as
wH

k+1,1a(θ0) �= 0. As a consequence, we get

[FH aH (θ0)wk+1,1UH
12d(θ0)

]H x = b (109)

and its equivalent version
⎡

⎢
⎢
⎢
⎢
⎣

Re(F) −Im(F)

Im(F) Re(F)

Re(pH ) −Im(pH )

Im(pH ) Re(pH )

⎤

⎥
⎥
⎥
⎥
⎦

x̃ = b̃ (110)

must have solution for any b or b̃. Note that p in (110) has
been defined as in (39). Owing to Re(pH ) = Re(pT ) and
−Im(pH ) = Im(pT ), we can conclude that

⎡

⎢
⎢
⎣

Re(F) −Im(F)
Im(F) Re(F)

Re(pH ) −Im(pH )
Im(pH ) Re(pH )

⎤

⎥
⎥
⎦

=
[

C
(Im(pH ) Re(pH ))

]

(111)

where C is exactly the same as defined in (49). Therefore,
Cz = k can certainly be solvable thanks to the fact that
it involves with less equations comparing with (110). This
completes the proof of the consistency of Cz = k.
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