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Pattern Synthesis via Oblique Projection-Based
Multipoint Array Response Control
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Xuepan Zhang , and Yue Yang, Student Member, IEEE

Abstract— In this paper, we present two array response control
algorithms for pattern synthesis with the aid of oblique projec-
tion. The proposed algorithms are developed on the basis of
the weight vector orthogonal decomposition (WORD) approach,
and both of them can control the array responses of multiple
points starting from an arbitrarily given weight vector. They
provide closed-form expressions and thus are computationally
attractive and convenient to implement. Furthermore, for the
preassigned angles to be controlled, the array responses can
be adjusted flexibly and separately, and hence, the process of
response control can be readily accomplished without complete
recalculation, if some of the desired levels require adjustments.
In addition, the second proposed algorithm modifies the first one
and realizes the array response control without a beam axis shift.
By successively performing the proposed algorithms to adjust
the response to meet certain requirements, the array pattern can
be synthesized. Extensive examples are provided to demonstrate
the performances of the proposed algorithms in array response
control and the effectiveness in pattern synthesis.

Index Terms— Array pattern synthesis, array response control,
array signal processing, oblique projection.

I. INTRODUCTION

THE array antenna has drawn considerable attention in the
past decades because of its importance for radar, wireless

communications, remote sensing, and many other applications.
Accordingly, array pattern synthesis plays a critical role in,
for example, suppressing undesirable interferences, enhancing
the signal power at specific regions, or realizing multiuser
reception. In pattern synthesis, it is expected to design a weight
vector such that the corresponding array response satisfies
specific requirements.

During the past several decades, quite a number of pattern
synthesis algorithms have been presented, in either adaptive
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an (data-dependent) or nonadaptive (data-independent) way.
In the adaptive manner, the pattern is adaptively synthesized
with measurements to force beams and nulls at the directions
of targets and interferences, respectively. For instance, the
linearly constrained minimum variance (LCMV) method [1]
adjusts the array responses by imposing multiple directional
constraints on the array responses. In [2], the sidelobe of
the LCMV beamformer is optimized with the semidefinite
relaxation (SDR) technique [3]. A diagonal loading method
is used in [4] to adjust the responses at a range of arrival
angles to exceed unity. In order to maintain a fairly stable
gain in the region of interest, a relatively flat main lobe
is synthesized by computing the outer product matrix and
autocorrelation sequence of the array weight vector in [5]
and [6] or using the iterative second-order cone programming
(SOCP) [7].

To synthesize array responses in data-independent
scenarios (which is the focus of our discussion later), several
global optimization approaches, such as genetic algorithm
(GA) [12], particle swarm optimization (PSO) [13], and
simulated annealing (SA) [14], have been adopted, with the
drawback of heavy computation burden. The method in [15]
was developed to adjust array responses, by minimizing
the mean-square error between the array response and the
desired one over a main lobe region subject to a mean-square
sidelobe constraint. In [16], a simple iterative algorithm is
presented to design desired patterns by solving a sequence of
linearly constrained least-squares problems. Several pattern
synthesis algorithms [17]–[20] have been developed by
taking advantage of the adaptive array theory [21]. The
convex optimization theory [22] has also been fully exploited
in [23]–[27], to control array response according to the
given specification.

Recently, we devised a class of pattern synthesis approaches
via array response control. In general, these algorithms
can be grouped into two categories, i.e., single-point array
response control and multipoint array response control. For
the first category, including the accurate array response con-
trol (A2RC) algorithm [28] and weight vector orthogonal
decomposition (WORD) algorithm [29], the pattern is syn-
thesized by iteratively controlling the response of a single
angle. For the second one, such as the multipoint accurate
array response control (MA2RC) algorithm [30] and flexi-
ble array response control algorithm via oblique projection
(FARCOP) [31], responses at multiple angles can be simul-
taneously adjusted in each iterative so as to achieve a faster
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synthesis. However, these algorithms may cause a beam axis
shift of the resulting beampattern. In other words, the beam
axis of the obtained pattern may be different from the desired
one. Although the modified multipoint accurate array response
control (M2A2RC) algorithm [30] provides a solution to adjust
array response levels without leading to beam axis shift, the
flexibility needs to be improved and a high computational
complexity is suffered.

The above-mentioned shortcomings of the existing meth-
ods motivate us to develop new array response control
approaches for pattern synthesis. Toward this end, in this
paper, we present two array response control algorithms in
sequence, by taking advantage of the WORD method [29]
and oblique projection [32]. More specifically, given an initial
weight vector, a series of weight vectors is first computed
by using the WORD approach. Note that each weight vector
is able to control the array response level at a preassigned
angle as desired. Then, to realize the multipoint array response
control, in the first algorithm, a linear constraint is imposed on
the ultimate weight to restrict its responses at the predescribed
angles, and an analytical expression of the final weight is
obtained by using the oblique projection operators. In addition,
to avoid the possible beam axis shift, we modify the first
algorithm by imposing an additional derivative constraint on
the beampattern, and this leads to the second algorithm that
also has a closed-form solution. Note that our algorithms
are able to control the array responses of multiple angles
separately. For this reason, the weight calculation needs not be
completely reconducted in the case when some desired levels
are changed. The application of the proposed algorithms to
array pattern synthesis is finally discussed.

The rest of this paper is organized as follows. In Section II,
the WORD algorithm is briefly introduced. The two proposed
algorithms are presented in Section III and their applications
to array pattern synthesis are provided in Section IV. Represen-
tative simulations are presented in Section V, and conclusions
are drawn in Section VI.

Notations: We use bold upper case and lower case letters
to represent matrices and vectors, respectively. In particular,
we use I to stand for the identity matrix. j �

√−1. (·)T

and (·)H denote the transpose and Hermitian transpose, respec-
tively. |·| is the absolute value. �(·) represents the real part of a
complex number. R and C denote the sets of real and complex
numbers, respectively. R(·) returns the column space of the
input matrix, and R⊥(·) is the orthogonal complementary
space of R(·). PZ and P⊥

Z represent the projection matrices
onto R(Z) and R⊥(Z), respectively.

II. WORD ALGORITHM

To control the array response, we design a weight vector w
such that

L(θ, θ0) � |wHa(θ)|2/|wHa(θ0)|2 (1)

meets some specific requirements. In (1), θ0 denotes the angle
of the beam axis, and a(θ) is the steering vector at θ and is
given by

a(θ) = [g1(θ)e− jωτ1(θ), . . . , gN (θ)e− jωτN (θ)]T (2)

where N is the number of array elements, gn(θ) denotes
the pattern of the nth element, τn(θ) represents the time
delay between the nth element and the reference point, n =
1, . . . , N , and ω denotes the operating frequency.

For a given weight vector wpre, the WORD algorithm [29]
is able to precisely control array response level at one pre-
assigned angle θc as desired, with a closed-form expression.
More specifically, the new weight vector satisfying the single-
point response requirement is analytically obtained as

w̆new = [w⊥ w‖][1 β]T (3)

where w⊥ and w‖ are orthogonally decomposed from the
previous weight vector wpre as

w⊥ � P⊥
a(θc)

wpre, w‖ � Pa(θc)wpre. (4)

In (3), the real-valued number β can be selected to be either
βa or βb, both of which can be determined by the desired level
ρc at θc. In [29], it has been derived that

βa = −�(B(1, 2)) + d

B(2, 2)
, βb = −�(B(1, 2)) − d

B(2, 2)
(5)

where B and d satisfy

B =
[

wH⊥a(θc)

wH‖ a(θc)

][
wH⊥a(θc)

wH‖ a(θc)

]H

−ρc

[
wH⊥a(θ0)

wH‖ a(θ0)

][
wH⊥a(θ0)

wH‖ a(θ0)

]H

(6)

d =
√

�2(B(1, 2)) − B(1, 1)B(2, 2). (7)

To obtain the ultimate expression of w̆new that adjusts the
response level of θc to ρc, the one (either βa or βb) that
minimizes F(β) = ‖P⊥

wpre
w̆new/‖w̆new‖2‖2

2 is selected. Again,
it should be emphasized that the WORD algorithm can only
control array response of a single point. Moreover, it may lead
to a possible beam axis shift on the resulting beampattern. To
overcome these deficiencies, we present two array response
control algorithms in the following, with the aid of oblique
projection.

III. PROPOSED ARRAY RESPONSE CONTROL ALGORITHMS

In this section, two multipoint response control algorithms
are presented. For clarity, we denote by θ1, . . . , θQ the angles
to be controlled, and let ρ1, . . . , ρQ be the corresponding
desired levels. Following the notation in Section II, the previ-
ous weight is denoted as wpre, and we assume for convenience
that wH

prea(θ0) = 1, which is always satisfied via scaling
if only wH

prea(θ0) �= 0. For the notation clarity, we define
A(θi , . . . , θ j ) � [a(θi), . . . , a(θ j )].

A. First Algorithm

In this section, given the previous weight vector wpre, we
consider how to find a new weight wnew with closed-form
expression satisfying

Lnew(θq , θ0) = ρq , q = 1, . . . , Q (8)

where Lnew(θ, θ0) denotes the corresponding pattern of wnew.
In addition, small pattern variations on the uncontrolled points
are desired.
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As aforementioned, the WORD algorithm is able to adjust
the array response level at one prescribed point. Thus, for any
q ∈ {1, . . . , Q}, the resulting weight vector w̆new,q , which
adjusts the response level of θq to its desired level ρq , i.e.,
|w̆H

new,qa(θq)|2/|w̆H
new,qa(θ0)|2 = ρq , is expressed as

w̆new,q = [wq,⊥ wq,‖][1 βq ]T (9)

where wq,⊥ = P⊥
a(θq)wpre and wq,‖ = Pa(θq)wpre. Once w̆new,q

in (9) is obtained, we scale it for later use as

wnew,q = w̆new,q/(aH(θ0)w̆new,q), q = 1, . . . , Q. (10)

For ∀q ∈ {1, . . . , Q}, it can be easily verified that the resulting
wnew,q in (10) satisfies

wH
new,qa(θ0) = 1 (11)∣∣wH

new,qa(θq)
∣∣2 = ρq . (12)

To realize the array response control task in (8), we propose
to construct the qualified wnew based on the Q weight vectors
wnew,1, . . . , wnew,Q . More specifically, we aim to devise a
unified weight vector wnew satisfying

wH
newa(θ0) = 1 (13a)

wH
newa(θq) = e jϕq wH

new,qa(θq), q = 1, . . . , Q (13b)

or compactly

ĂHwnew = f (14)

where

Ă � A(θ0, θ1, . . . , θQ) ∈ C
N×(Q+1)

f �
[
1, e jϕ1wH

new,1a(θ1), . . . , e jϕQ wH
new,Qa(θQ)

]H ∈ C
Q+1

and the real-valued ϕqs, q = 1, . . . , Q, can be arbitrarily spec-
ified. It can be verified that the weight vector satisfying wnew
also fulfills the response control requirements in (8). Clearly,
for the specific case of Q = N − 1, we have wnew = Ă−1f .
However, if Q < N − 1, the linear equation (14) with respect
to the weight vector wnew is underdetermined and, hence, has
infinitely many solutions. To this end, we devise a closed-form
solution to the problem (14) via oblique projection [32]. As we
show later, the potential benefit may be small pattern variations
at the uncontrolled points.

To proceed, let us define a matrix Ăi− obtained by removing
a(θi ) from Ă as

Ăi− � A(θ0, . . . , θi−1, θi+1, . . . , θQ) ∈ C
N×Q (15)

and accordingly define

T0 � I − EH
Ă0−|a(θ0)

(16a)

Tq � EH
a(θq)|Ăq−

, q = 1, . . . , Q (16b)

where EĂ0−|a(θ0)
and Ea(θq )|Ăq− are the oblique projectors1

such as

EĂ0−|a(θ0)
= Ă0−

(
ĂH

0−P⊥
a(θ0)

Ă0−
)−1ĂH

0−P⊥
a(θ0)

Ea(θq )|Ăq− = a(θq)
(
aH(θq)P⊥

Ăq−
a(θq)

)−1aH(θq)P⊥
Ăq−

.

1The orthogonal projector PZ with Z = [G S] can be expressed as
PZ = EG|S + ES|G , where EG|S and ES|G are oblique projectors satisfying
EG|S = G(GHP⊥

S G)−1GHP⊥
S and ES|G = S(SHP⊥

GS)−1SHP⊥
G . It is known

that EG|SG = G, EG|SS = 0, ES|GS = S, and ES|GG = 0.

Algorithm 1 First Algorithm
1: give the previous weight vector wpre, θq and its desired

level ρq , calculate T0 and Tq by (16), q = 1, . . . , Q
2: for q = 1, . . . , Q do
3: calculate βq using the WORD algorithm such that

Lnew(θq , θ0) = ρq

4: obtain w̆new,q = [wq,⊥, wq,‖][1, βq ]T

5: obtain wnew,q = w̆new,q/(aH(θ0)w̆new,q)
6: end for
7: output the weight vector wnew by (20), where ϕq , q =

1, . . . , Q, can be arbitrarily specified

Then, it can be readily shown that

TH
i a(θ j ) =

{
a(θi ), if j = i

0, if j �= i
(17)

where i, j = 0, 1, . . . , Q. In other words, the linear transfor-
mation TH

i passes a(θi ) without any change while blocking
the components of a(θ j ) as long as j �= i .

By exploiting the above-mentioned properties, it will
be shown below that wnew can be obtained as a lin-
ear combination of the transformed weight vectors wpre
and wnew,qs. More specifically, we recall the assump-
tion that wH

prea(θ0) = 1. Then, according to (17), one
gets

wH
preTH

0 a(θ j ) =
{

wH
prea(θ0) = 1, if j = 0

0, if j �= 0
(18)

and

wH
new,qTH

q a(θ j ) =
{

wH
new,qa(θq), if j = q

0, if j �= q.
(19)

According to (18) and (19), we can thus express a qualified
wnew as

wnew = T0wpre +
Q∑

q=1

e− jϕq Tq wnew,q . (20)

Obviously, it can be verified that

wH
newa(θ0) = wH

preTH
0 a(θ0) +

Q∑
q=1

e jϕq wH
new,qTH

q a(θ0)

= wH
prea(θ0)

= 1 (21a)

wH
newa(θq) = wH

preTH
0 a(θq) +

Q∑
i=1

e jϕi wH
new,i T

H
i a(θq)

= e jϕq wH
new,qa(θq), q = 1, . . . , Q. (21b)

Therefore, the resulting wnew in (20) solves the linear equa-
tion (14). In other words, it realizes the multipoint array
response control as described in (8).

It is easy to find from (21b) that the resulting wnew in
(20) is able to adjust the response of θq separately, by simply
renewing the corresponding weight wnew,q , q = 1, . . . , Q. In
this manner, the responses at other controlled points (i.e., θi s,



ZHANG et al.: PATTERN SYNTHESIS VIA OBLIQUE PROJECTION-BASED MULTIPOINT ARRAY RESPONSE CONTROL 4605

i = 1, . . . , Q, i �= q) remain unchanged, and the calculation
of wnew need not be completely reconducted. Therefore, the
above-mentioned algorithm is flexible in the adjustment of
array responses, especially when only some desired levels of
the preassigned angles vary. More benefits of the resulting
wnew in (20) will be discussed later. Finally, to make the
above-mentioned algorithm clear, we summarize the main
steps in Algorithm 1.

B. Second Algorithm

In Section III-A, a closed-form array response control
algorithm is presented to adjust the response levels of multiple
angles, with the aid of oblique projection. Analysis shows that
the proposed algorithm can adjust the responses independently.
However, the first algorithm may lead to beam axis shift and
thus make the maximum response level appear at an angle
other than θ0. A similar problem was considered in [30]. To
tackle this imperfection, the second array response control
algorithm is developed by modifying the first one with a
derivative constraint.

Again, we give the previous weight vector wpre (satisfying
wH

prea(θ0) = 1) and the desired level ρq at θq , q = 1, . . . , Q.
Then, to realize array response control without beam axis
shift, the ultimate weight vector wnew should satisfy (8), and
additionally

θ0 = arg max
θ

∣∣wH
newa(θ)

∣∣. (22)

Hence, to ensure the new constraint (22) satisfied, the follow-
ing derivative constraint [30] can be imposed:

∂ P(θ)

∂θ

∣∣∣∣
θ=θ0

= 0 (23)

where P(θ) = wH
newa(θ)aH(θ)wnew denotes the array power

response of wnew, and θ0 is the desired beam axis. Substituting
P(θ) into (23) yields

∂ P(θ)

∂θ
= wH

new
∂a(θ)

∂θ
aH(θ)wnew + wH

newa(θ)
∂aH(θ)

∂θ
wnew

= 2�
(

wH
new

∂a(θ)

∂θ
aH(θ)wnew

)
(24)

and further

∂ P(θ)

∂θ

∣∣∣∣
θ=θ0

= 2� (
wH

newd(θ0)aH(θ0)wnew
)

(25)

where d(θ0) is defined as

d(θ0) � ∂a(θ)

∂θ

∣∣∣∣
θ=θ0

. (26)

Then, to control the array response control as required in (8)
without leading to the beam axis shift, the weight vector wnew
should satisfy

� (
wH

newd(θ0)aH(θ0)wnew
) = 0 (27a)∣∣wH

newa(θq)
∣∣2/∣∣wH

newa(θ0)
∣∣2 = ρq , q = 1, . . . , Q. (27b)

Following the first algorithm, the identities in (27) can be
guaranteed by setting

wH
newa(θ0) = 1 (28a)

wH
newa(θq) = e jφq wH

new,qa(θq), q = 1, . . . , Q (28b)

� (
wH

newd(θ0)
) = 0 (28c)

where φq ∈ R can be arbitrarily specified. Note that the weight
vector wnew,q in (28b) is obtained with the WORD algorithm
(see (10)).

To find a weight wnew satisfying (28), we first note that
�(wH

newd(θ0)) = �(wT
new)�(d(θ0)) + 	(wT

new)	(d(θ0)). Then,
one can convert (28c) to its real domain as

w̃T
newd̃(θ0) = 0 (29)

where the tilde notation is defined as x̃ � [�(xT),	(xT)]T.
On the other hand, one can readily find that

wH
newa(θ)

= [�(
wT

new

)
,	(

wT
new

)] [(�[a(θ)]
	[a(θ)]

)
+ j

( 	[a(θ)]
−�[a(θ)]

)]
= w̃T

new [̃a(θ) + jϒã(θ)] (30)

where the matrix ϒ is defined as

ϒ �
[

IN

−IN

]
∈ R

2N×2N . (31)

According to (30), constraint (28a) can be reformulated as

w̃T
newã(θ0) = 1, w̃T

newϒã(θ0) = 0. (32)

Moreover, by defining

uq � e− jφq wnew,q (33)

and then reshaping (28b) as

wH
newa(θq) = (e− jφq wnew,q)Ha(θq) = uH

q a(θq) (34)

one can rewrite the constraint (28b) as

w̃T
newã(θq) = ũT

q ã(θq), w̃T
newϒã(θq) = ũT

q ϒã(θq) (35)

where the index q can be taken from 1 to Q.
Combining (29), (32), and (35), the identities in (28) can

be equivalently expressed as

w̃T
newã(θ0) = 1 (36a)

w̃T
newϒã(θ0) = 0 (36b)

w̃T
newã(θq) = ũT

q ã(θq), q = 1, . . . , Q (36c)

w̃T
newϒã(θq) = ũT

q ϒã(θq), q = 1, . . . , Q (36d)

w̃T
newd̃(θ0) = 0 (36e)

or compactly

C̆Tw̃new = g (37)

where C̆ ∈ R
2N×(2Q+3) and g ∈ R

2Q+3 are, respectively,
detailed as

C̆ � [Y(θ0), Y(θ1), . . . , Y(θQ), d̃(θ0)]
g �

[
1, 0, ũT

1 ã(θ1), ũT
1 ϒã(θ1), . . . , ũT

Q ã(θQ), ũT
Qϒã(θQ), 0

]T
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with Y(θ) being defined by

Y(θ) � [̃a(θ),ϒã(θ)] ∈ R
2N×2. (38)

Once a weight vector w̃new satisfying (37) is obtained, we can
reformulate it to complex domain and express the final weight
vector wnew as

wnew = [IN , jIN ] w̃new. (39)

To find a closed-form w̃new satisfying (37), similar to the
first algorithm, we first define a matrix C̆i− ∈ R

2N×(2Q+1),
by removing the columns of ã(θi ) and ϒã(θi ) from C̆, i =
0, 1, . . . , Q, as

C̆i− �
[
Y(θ0), . . . , Y(θi−1), Y(θi+1), . . . , Y(θQ), d̃(θ0)

]
.

Then, we define

Z0 � I − ET
C̆0−|Y(θ0)

(40a)

Zq � ET
Y(θq )|C̆q−

, q = 1, . . . , Q (40b)

where EC̆0−|Y(θ0)
and EY(θq )|C̆q− are the oblique projectors as

EC̆0−|Y(θ0)
= C̆0−

(
C̆H

0−P⊥
Y(θ0)

C̆0−
)−1C̆H

0−P⊥
Y(θ0)

EY(θq )|C̆q− = Y(θq)
(
YH(θq)P⊥

C̆q−
Y(θq)

)−1YH(θq)P⊥
C̆q−

with q = 1, . . . , Q. Recalling the property of oblique projec-
tor, one can readily learn that

ZT
i Y(θ j ) =

{
Y(θ j ), if j = i

0, if j �= i
(41a)

ZT
i d̃(θ0) = 0 (41b)

where i and j can be taken as 0, 1, . . . , Q. Consequently,
following a similar concept to the first algorithm, an analytical
expression of w̃new can be given by

w̃new = Z0w̃pre +
Q∑

q=1

Zq ũq . (42)

It can be readily verified that

w̃T
new(̃a(θ0) + jϒã(θ0)) = w̃T

preZT
0 (̃a(θ0) + jϒã(θ0))

= w̃T
preZT

0 Y(θ0)[1, j ]T

= w̃T
preY(θ0)[1, j ]T

= w̃T
prea(θ0) + jw̃T

preϒa(θ0)

= wH
prea(θ0)

= 1 (43a)

w̃T
new(̃a(θq) + jϒã(θq)) =

Q∑
i=1

ũT
i ZT

i Y(θq)[1, j ]T

= ũT
q Y(θq)[1, j ]T

= ũT
q (̃a(θq) + jϒã(θq)) (43b)

w̃T
newd̃(θ0) = w̃T

preZT
0 d̃(θ0) +

Q∑
q=1̃

uT
q ZT

q d̃(θ0)

= 0. (43c)

Algorithm 2 Second Algorithm
1: give the previous weight vector wpre, θq and its desired

level ρq , calculate T0 and Tq by (16), q = 1, . . . , Q
2: for q = 1, . . . , Q do
3: calculate βq via WORD algorithm such that

Lnew(θq , θ0) = ρq

4: obtain w̆new,q = [wq,⊥, wq,‖][1, βq ]T

5: obtain wnew,q = w̆new,q/(aH(θ0)w̆new,q)
6: end for
7: calculate the weight vector w̃new by (42), where φq in uq ,

q = 1, . . . , Q, can be arbitrarily specified
8: obtain the weight vector wnew = [IN , jIN ] w̃new

This shows that the resulting w̃new in (42) satisfies (37),
or equivalently, the corresponding wnew in (39) satisfies the
identities in (28). Thus, the new weight vector wnew in (39)
realizes the preassigned multipoint array response control (8)
without leading to the beam axis shift. Similar to the first
algorithm, wnew in (39) is able to adjust the response of
θq separately, by simply renewing the corresponding weight
wnew,q , q = 1, . . . , Q. In this manner, the responses at other
controlled points (i.e., θi s, i = 1, . . . , Q, i �= q) remain
unchanged, and the calculation of wnew need not be completely
reconducted. Since an additional constraint is imposed in the
above-mentioned algorithm, we know that at most N−2 angles
can be jointly adjusted in this approach. Finally, we summarize
the main steps of the second algorithm in Algorithm 2.

Remark 1: In the above-presented algorithms, the parame-
ters ϕq and φq , q = 1, . . . , Q, can be arbitrarily specified.
Basically, how to further determine ϕq or φq relies on specific
considerations and applications. We found through extensive
experiments that good performance (e.g., small beampattern
variation at uncontrolled region) can be obtained by simply
setting ϕq = 0 or φq = 0 for q = 1, . . . , Q. With this setting,
the phase outputs of beamformer at the controlled angles θqs
also remain unchanged, q = 1, . . . , Q.

C. Properties of the Proposed Algorithms

In this section, we shall show some interesting properties of
the above-mentioned two algorithms. To begin with, we note
that the component in R⊥(Ă) has no contribution to the array
response levels at θi , i = 0, 1, . . . , Q, but may affect the
responses outside the controlled points. Then, compared to
the previous weight wpre, a weight vector wnew that brings
no redundancy (i.e., component in R⊥(Ă)) should satisfy
wnew − wpre ∈ R(Ă), or equivalently

P⊥
Ă
(wnew − wpre) = 0. (44)

Interestingly, both the resulting two weight vectors in (20) and
(39) satisfy (44). To see this, we can rewrite (see Appendix A
for details) wnew in (20) as

wnew = P⊥
Ă

wpre + ĂHc (45)

where H and c are defined in (59) and (60) in Appendix A,
respectively. From (45), it can be readily validated that (44)
holds true.
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On the other hand, to show that the resulting wnew in (39)
also satisfies (44), we first reexpress w̃new in (42) as

w̃new = P⊥
C̆

w̃pre + C̆Fα. (46)

The derivation details of (46) can be found in Appendix B,
where the definitions of F and α have been specified in (67).
From (46), one can readily verify that

P⊥
C̆
(w̃new − w̃pre) = 0. (47)

On this basis, it is derived in Appendix C that the reconstructed
weight vector wnew from w̃new as (39) satisfies

P⊥
[Ă, d(θ0)](wnew − wpre) = 0. (48)

Since R⊥([Ă, d(θ0)]) ∈ R⊥(Ă), it is not difficult to learn
that (44) holds true.

In addition, it is interesting to note that when taking ρq =
Lpre(θq, θ0) � |wH

prea(θq)|2/|wH
prea(θ0)|2 in (8) and ϕq = 0

in (20), q = 1, . . . , Q, the resulting wnew in (20) satisfies

wnew = wpre. (49)

The derivation of (49) can be found in Appendix D. This is
consistent with the fact the weight vector should be unchanged
if the response at θq is not adjusted.

Similarly, in the second algorithm, if ρq = Lpre(θq, θ0)
in (8) and φq = 0 in (28b), q = 1, . . . , Q, then the vector w̃new
in (42) satisfies (see Appendix E for the derivation details)

w̃new = (
I − ET

d̃(θ0)|C̆d̃−

)
w̃pre (50)

where

C̆d̃− � [Y(θ0), Y(θ1), . . . , Y(θQ)] ∈ R
2N×(2Q+2). (51)

In this case, the weight vector wnew [obtained with (39)]
steers the beam axis to θ0, with the response levels at θqs
(q = 1, . . . , Q) remaining unchanged. In fact, (50) provides
a flexible manner to rechange the beam axis or scan the
beampattern, with some fixed constraints on array response.
Note that if no specific constraints are required on the array
response levels, we can simply set C̆d̃− = Y(θ0) and take the
new weight as

wnew = [IN , jIN ](I − ET
d̃(θ0)|Y(θ0)

)
w̃pre. (52)

In this case, the resulting weight vector wnew refocuses the
beam axis to θ0, with possible less variations compared to the
beampattern of the previous weight.

D. Computational Complexity and Advantage Summary

In this section, we analyze the computational complexities
of the proposed two algorithms. Both of our algorithms pro-
vide closed-form expressions for the ultimate weight vectors
[see (20) and (39)], and their main computations lie in the
calculations of oblique projectors. For the first algorithm,
the computational complexity of each oblique projector (i.e.,
EĂ0−|a(θ0)

or Ea(θq )|Ăq− , q = 1, . . . , Q) is O(Q3). Thus,
the overall computational complexity of the first algorithm
is O(Q4). Similarly, in the second algorithm, the calcula-
tion of the oblique projector (i.e., EC̆0−|Y(θ0)

or EY(θq )|C̆q− ,

Algorithm 3 Proposed Pattern Synthesis Algorithm
1: give θ0, the desired pattern Ld (θ), the initial weight vector

w0 and its corresponding response pattern L0(θ, θ0), set
k = 1

2: while 1 do
3: select Qk angles by comparing Lk−1(θ, θ0) with

Ld (θ)
4: apply the proposed algorithm (see Algorithm 1 or

Algorithm 2) to realize Lk(θq , θ0) = Ld(θq), q = 1,
. . . , Qk , obtain wk and the corresponding Lk(θ, θ0)

5: if Lk(θ, θ0) is not satisfactory then
6: set k = k + 1
7: else
8: break
9: end if

10: end while
11: output wk and Lk(θ, θ0)

q = 1, . . . , Q) is O(Q3). Thus, the computational complexity
of the second algorithm is also O(Q4). Note that the second
algorithm may cost more space complexity compared to the
first one, and both of the algorithms can control the responses
without complete recalculation, whenever some of the desired
levels require adjustments.

To summarize, the proposed two algorithms have the fol-
lowing advantages:

1) They can precisely control the array responses at multi-
ple points starting from an arbitrarily given weight vec-
tor, and the second algorithm realizes this task without
leading to beam axis shift.

2) They provide closed-form expressions and thus are com-
putationally attractive and convenient to implement.

3) They are able to control the array responses of multiple
angles separately. Hence, we do not need to completely
reconduct the weight calculation whenever some desired
levels are changed.

4) They can achieve array responses control without caus-
ing much beampattern variations at the uncontrolled
regions.

IV. PATTERN SYNTHESIS USING THE

PROPOSED ALGORITHMS

In this section, the application of the proposed algorithms to
pattern synthesis is briefly introduced. Generally, the strategy
herein shares a similar concept of pattern synthesis using
MA2RC [30] or FARCOP [31]. More specifically, set k =
1 and give an initial weight vector w0 that can be freely
configured. Multiple angles are first determined according to
Lk−1(θ, θ0) (standing for the array response pattern of wk−1),
and the desired pattern, denoted as Ld(θ). Following the angle
selection strategy in [20], for the sidelobe synthesis, we select
Qk (Qk ≤ N − 1) peak angles where the response differences
(from the desired levels) are relatively large. For the main lobe
synthesis, few discrete angles, where the responses deviate
large from the desired ones, are chosen. Once those angles
are picked out, the proposed algorithms can be utilized to
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find the weight wk by adjusting the corresponding responses
to their desired values. Then, we set k = k + 1 and repeat
the above-mentioned procedure until the response pattern is
satisfactorily synthesized.

Note that for a desired pattern with narrow beam (no specific
shape constraints on the main lobe region), we apply the
second algorithm to avoid beam axis shift. As for a desired
pattern with lower-bound constraints on its main lobe, e.g.,
beampattern with a flat-top main lobe, we can use the first
algorithm since the beam axis shift problem is less critical
in this case. In addition, the number of the selected angles
(denoted as Qk) can be different in each step, and it should
satisfy Qk ≤ N −1 for the first algorithm and Qk ≤ N −2 for
the second one. Finally, we summarize the proposed pattern
synthesis algorithm in Algorithm 3.

V. NUMERICAL RESULTS

In this section, the effectiveness and flexibility of the pro-
posed algorithms for multipoint control are first shown. Then,
representative numerical examples are conducted to demon-
strate their superiorities in pattern synthesis under different
situations. As mentioned earlier, we simply set ϕq = φq = 0,
q = 1, . . . , Q, in all simulations. For comparison, the results
of convex programming (CP) method in [23], SDR method
in [24], Philip’s method in [18], WORD algorithm in [29],
MA2RC and M2A2RC in [30], and the FARCOP algorithm
in [31] will also be examined if applicable.

A. Illustrations of the Proposed Algorithms

1) Response Control for ULA: In the first example, a lin-
early half-wavelength-spaced array with 16 isotropic elements
is considered. The beam axis is taken as θ0 = 20◦. We set
the previous weight vector wpre as the Chebyshev weight
with a −25 dB of sidelobe attenuation, and prescribe three
angles, i.e., θ1 = −60◦, θ2 = −36◦, and θ3 = −12◦. In
the first case, we take the corresponding desired levels as
ρ1 = ρ2 = ρ3 = −40 dB. Accordingly, one can calculate
that β1 = 0.1878, β2 = 0.1788, and β3 = 0.1772. Fig. 1(a)
shows the resulting beampattern of various algorithms. One
can see that all the methods have realized the preassigned
array response control task, and the obtained beampatterns are
similar. After zooming in the main lobe region, it can be found
that MA2RC, FARCOP, and the first proposed algorithm lead
to the undesirable beam axis shifts on the beampatterns. For
the second algorithm, the beam axis is unshifted at θ0 and its
effectiveness can be verified. In addition, we notice that the
responses of the uncontrolled angles are almost unchanged for
the proposed two algorithms. We have specified the resulting
weights of our algorithms in Table I.

In the second case, we take the desired levels as ρ1 =
−35 dB, ρ2 = −40 dB, and ρ3 = −20 dB. In this scenario,
we have β1 = 0.3341, β2 = 0.1788, and β3 = 1.7849.
Fig. 1(b) depicts the obtained beampatterns and Table II
provides the resulting weights of our two algorithms. Again,
the proposed two algorithms fulfill the given array response
task and the second one does not bring a beam axis shift
to its resulting pattern. Compared to the first case, it should

Fig. 1. Illustration of the proposed algorithms on array response control.
(a) First case. (b) Second case.

TABLE I

OBTAINED WEIGHTS OF ARRAY RESPONSE CONTROL (THE FIRST CASE)

be noted that we have altered ρ1 and ρ3 and have kept ρ2
unvaried. For this reason, it is only required to recalculate
the corresponding wnew,1 and wnew,3 in our algorithms and
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TABLE II

OBTAINED WEIGHTS OF ARRAY RESPONSE
CONTROL (THE SECOND CASE)

TABLE III

PARAMETERS OF THE NONISOTROPIC LINEAR RANDOM ARRAY

then readily renew the ultimate weight vectors. One can see
that the array responses can be separately adjusted by the
devised two algorithms, while MA2RC and M2A2RC have
no such ability, although they obtain similar beampatterns to
those of our algorithms in the above-mentioned testings. Note
again that the responses of the uncontrolled-angles are almost
unchanged for our algorithms.

2) Response Control for Nonisotropic Random Array: In
this example, we consider a ten-element nonisotropic linear
random array (see [16] and [28]). The pattern of the nth
element is given by

gn(θ) = (cos(πlnsin(θ + ζn)) − cos(πln))/cos(θ + ζn) (53)

where ζn and ln represent the orientation and length of the
element, respectively. More details of the array can be found
in Table III, where the element positions (in wavelength) are
also specified. In this example, we set θ0 = 0◦ and take wpre =
a(θ0). It is expected to adjust the response levels of θ1 = −25◦
and θ2 = −4◦ to be ρ1 = −20 and ρ2 = 0 dB, respectively.
Note that θ1 is located in the sidelobe region and θ2 is inside
the main lobe region.

The results of various methods are shown in Fig. 2, from
which we find that the obtained beampatterns of MA2RC
and M2A2RC have been seriously distorted in the main lobe
region. When testing our first algorithm, one can see that it
realizes the predescribed array response task and obtains a
similar beampattern to that of the FARCOP algorithm. Nev-
ertheless, both of these two algorithms bring beam axis shifts

Fig. 2. Simulation results of multipoint responses control for a nonisotropic
nonuniform random array.

Fig. 3. Illustration of the second algorithm on beampattern refocus.

to the resulting beampatterns. As for our second algorithm,
it overcomes this drawback and obtains a qualified pattern,
as shown in Fig. 2. The resulting weights of our algorithms
have been specified in Table IV.

3) Beampattern Refocus for the Optimal Beamformer: In
this section, we consider a ten-element uniform linear array
(ULA) and present the application of the second algorithm
on beampattern refocusing. More specifically, we take θ0 =
40◦ and assume two interferences impinging from −50◦ and
20◦, respectively. The interference-to-noise ratios (INRs) are
set as 30 dB for both interferences, and the signal-to-noise
ratio (SNR) is taken as 10 dB. In this case, we set the previous
weight as the optimal beamformer, i.e., wpre = wopt =
R−1

n+i a(θ0) (as detailed in Table V), where Rn+i is the noise-
plus-interference covariance matrix and wopt maximizes the
signal-to-interference-plus-noise ratio (SINR).

The obtained beampattern of the optimal beamformer is
depicted in Fig. 3, in which one can see that two nulls
are formed at the directions of interferences. In addition,
it can be observed that the resulting beam axis of the optimal
beamformer has been shifted about 0.1◦ away the preassigned
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Fig. 4. Intermediate results of pattern synthesis with nonuniform sidelobe. (a) Synthesized beampattern at the first step. (b) Synthesized beampattern at the
second step. (c) Synthesized beampattern at the third step.

TABLE IV

OBTAINED WEIGHTS WHEN CONTROLLING ARRAY RESPONSES

FOR A NONISOTROPIC NONUNIFORM RANDOM ARRAY

TABLE V

SPECIFICATIONS OF THE OPTIMAL BEAMFORMER wopt AND

THE OBTAINED wnew AFTER BEAMPATTERN REFOCUS

θ0. Following the analysis in Section III-C, we refocus the
optimal beampattern to θ0 by calculating a new weight vector
wnew using our second algorithm, more exactly, the formula-
tion (52). The obtained weightings are specified in Table V
and the corresponding result is shown with red line in Fig. 3,
in which we find that the beam axis has been refocused to θ0.
Moreover, the two nulls at the directions of interferences are
remained, and the obtained beampattern shape is almost the
same as that of wopt.

B. Pattern Synthesis Using the Proposed Algorithms

In this section, we present the numerical results to vali-
date the applicability and illustrate the performances of the
proposed algorithms in pattern synthesis. For convenience,
we set the initial weight vector as w0 = a(θ0) and only show

Fig. 5. Result comparison of nonuniform sidelobe synthesis.

one beampattern synthesis result of our proposed algorithms,
according to the specification of desired pattern.

1) Nonuniform Sidelobe Synthesis for ULA: In this exam-
ple, the pattern synthesis for a linearly half-wavelength-spaced
array with N = 60 isotropic elements is considered. The
desired pattern steers at θ0 = 50◦ with a nonuniform sidelobe
level (see the black dashed lines in Fig. 4 for details).

Fig. 4 presents the intermediate synthesis results when using
our second array response control algorithm. One can clearly
see that, at each step of synthesis process, all sidelobe peaks
of the previous pattern are selected, and then adjusted to
their desired levels. Moreover, it only requires three steps to
obtain a desirable beampattern, without leading to the beam
axis shift. The resulting weights are specified in Table VI.
The resulting comparison with other existing approaches is
displayed in Fig. 5. It can be observed that the pattern
envelopes of CP method, Philip’s method, and the WORD
method (after carrying out 100 iteration steps) are not aligned
with the desired one. For WORD, it may require more steps
to obtain a satisfactory pattern. Moreover, CP method, Philip’s
method, and the WORD method result unexpected beam axis
shifts to their resulting beampatterns, either does the FARCOP
algorithm as clearly shown in Fig. 5. The M2A2RC algorithm
(also with three iteration steps) obtains a qualified sidelobe
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TABLE VI

OBTAINED WEIGHTS IN NONUNIFORM SIDELOBE SYNTHESIS

Fig. 6. Beampattern comparison with different phase shifter resolutions.

without shifting the beam axis. However, its runtime is longer
than that of our second algorithm.

In the above-mentioned testing, the phase shifters are
assumed to have infinite resolutions. In practice, however,
the full-precision phase shifter is less practical, due to
the hardware limitations. For this reason, we next consider
low-resolution phase shifters with only finite phase states
available and investigate the performance of our algorithm
under this situation. More precisely, the resulting continu-
ous phase values are quantized to the feasible set directly,
and the runtime is almost unchanged compared to the
infinite-resolution case. Fig. 6 shows the comparison of the
full-resolution beampattern with those of 8 bit and 5 bit
resolutions. It is seen that the 8 bit resolution phase shifters can
provide comparable accuracy as the continuous ones. However,
it is observed in Fig. 6 that, if 5 bit resolution phase shifters
are used, the obtained envelope can still remain generally,

TABLE VII

ELEMENT LOCATIONS OF NONUNIFORMLY SPACED LINEAR ARRAY AND
WEIGHTS OBTAINED BY THE SECOND ALGORITHM

Fig. 7. Synthesized multibeam patterns for a nonuniformly spaced linear
array.

but slight fluctuations at several angle sectors appear. Hence,
an 8 bit resolution of phase weighting is a good candidate to
achieve satisfactory accuracy and fulfill physical restrictions
in practice.

2) Multibeam Pattern Synthesis for Nonuniformly Spaced
Linear Array: In this example, multibeam pattern synthesis for
the 16-element nonuniformly spaced linear array is considered.
The element locations are given in Table VII, which follow
the setting in [29]. The two beams steer at 30◦ and −10◦,
respectively. Here, we take a(30◦) as the initial weight and
then apply the second algorithm to control the response at
−10◦ to 0 dB, by setting L1(−10◦, 30◦) = 0 dB. On this basis,
the second algorithm is iteratively applied to adjust sidelobe
response to be lower than −25 dB. After implementing four
steps, a satisfactory pattern is obtained, and the corresponding
weightings are listed in Table VII.

The synthesized patterns of CP, Philip’s method, WORD
(with 50 iteration steps), M2A2RC, FARCOP, and our second
algorithm are shown in Fig. 7. To make a fair comparison,
we have conducted M2A2RC and FARCOP the same iteration
numbers as our algorithm. One can clearly see that CP, Philip’s
method, WORD, and FARCOP have brought serious shifts to
their beam axes. Moreover, the pattern envelope of Philip’s
method is higher than the desired level at some regions,
mainly due to its empirical parameter selection scheme. For
our algorithm, the beam axis is unaltered and its execution
time is shorter than that of M2A2RC.
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Fig. 8. Beampattern comparison with different phase shifter resolutions.

TABLE VIII

PARAMETERS OF THE NONISOTROPIC RANDOM ARRAY AND THE

OBTAINED WEIGHTINGS BY THE FIRST ALGORITHM

To further investigate the performance of our algorithm
under the circumstance of finite phase resolution, we quantize
the phase values and depict the resulting beampatterns with
different resolutions shown in Fig. 8. It can be seen that
the pattern with 8 bit resolution is almost the same as that
of the full-resolution one. Although the result with 5 bit
resolution brings some fluctuations at specific regions, the
general envelope of the beampattern can still remain.

3) Pattern Synthesis With Constraints on Both Main Lobe
and Sidelobe: To further examine the performance of the pro-
posed method for pattern synthesis, a 21-element nonisotropic
linear random array is considered. The pattern of the nth
element is specified by gn(θ) in (53). More details of the
array can be found in Table VIII, where the element positions
(in wavelength) are also specified. In this case, we steer the

Fig. 9. Synthesized pattern with flat-top main lobe and broad-notch sidelobe
for a nonisotropic random array.

Fig. 10. Beampattern comparison with different phase shifter resolutions.

beam axis to θ0 = 0◦. The desired pattern has a flat-top main
lobe and nonuniform sidelobes. More specifically, all response
levels in the main lobe [θ0 − 15◦, θ0 + 15◦] are expected to be
0 dB. The upper bound level is −35 dB in the sidelobe region
[60◦, 80◦] and −25 dB in the rest of the sidelobe region. In this
example, the first algorithm is applied since it is unnecessary
to keep the beam axis unchanged in the flat-top scenario.

With the above-mentioned setting, the CP method is not
applicable owing to the nonconvex lower bound constraint on
beampattern. For this reason, the SDR method [24], which
relaxes the nonconvex constraint into the convex one, is con-
ducted and tested. The simulation results of SDR, Philip’s
method, WORD (with 450 iteration steps), MA2RC, FARCOP,
and the proposed algorithm (with all the later three approaches
carrying out 200 iteration steps) are compared, as shown
in Fig. 9. It is shown that the obtained sidelobe response
of SDR does not satisfy the prescribed requirement due to
the fact that the relaxation operator can only lead to an
approximate solution. For Philip’s method, the general shape
of its beampattern looks good, with some sidelobes being
higher than the desired values. On the other hand, we can see
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that the resulting beampattern of MA2RC has been distorted.
Since MA2RC is a modified version of A2RC in [28], the
unsatisfactory result may be caused by the empirical parameter
selection of A2RC as discussed in [29]. For our proposed
algorithm (the resulting weightings are listed in Table VIII),
it obtains a main lobe with ripple about 0.1dB and qualified
sidelobe levels, although the initial pattern is considerably
different from the desired one.

To measure the performance of our algorithm with
finite-resolution phase shifters, we depict the resulting beam-
patterns by quantizing the phase weightings to different finite
sets. The comparison is presented in Fig. 10, from which we
can see that the beampattern with 8 bit phase resolution is
almost identical with the full-precision one. When testing the
performance of our algorithm with 5 bit phase resolution, slight
differences are observed between the obtained pattern and the
full-resolution one. Nevertheless, in general, the shape of the
former can be maintained as presented in Fig. 10.

VI. CONCLUSION

In this paper, we have presented two closed-from algorithms
for multipoint array response control, with the aid of oblique
projection operator. Both the proposed two algorithms work
on the foundation of the WORD approach, and they can
adjust array responses separately in very simple manners,
with small pattern variations in the uncontrolled region. Our
algorithms are able to separately control the array responses.
In this manner, the weight calculation need not be completely
reconducted in the case when some desired levels are changed.
Moreover, the second algorithm, which is an extension of
the first one, has realized array response adjustment without
leading to beam axis shift. The devised algorithms are com-
putationally efficient. The application to pattern synthesis has
been discussed and their effectiveness and superiority have
been validated by examples under various situations.

APPENDIX A
DERIVATION OF (45)

To begin with, we expand Ea(θi )|Ăi− as

Ea(θi )|Ăi− = a(θi )(aH(θi )P⊥
Ăi−

a(θi))
−1aH(θi)P⊥

Ăi−
= ξi a(θi)aH(θi )(I − PĂi−), i = 0, 1, . . . , Q (54)

where ξi = (aH(θi)P⊥
Ăi−

a(θi ))
−1, i = 0, 1, . . . , Q, are real

values. In addition, after some calculation, it is not hard to
derive that

(I − PĂi−)a(θi ) = Ăhi , i = 0, 1, . . . , Q (55)

where hi ∈ C
Q+1 is obtained by inserting an element one

at the (i + 1)th entry of bi = −(ĂH
i−Ăi−)−1ĂH

i−a(θi ), i =
0, 1, . . . , Q. More exactly, we have

hi = [bi (1), . . . , bi (i), 1, bi (i + 1), . . . , bi (Q)]T.

Then, recalling (16), one can obtain that

T0wpre = (
I − EH

Ă0−|a(θ0)

)
wpre

= (
I − PH

Ă
+ EH

a(θ0)|Ă0−

)
wpre

= P⊥
Ă

wpre + ξ0(I − PĂ0−)a(θ0)aH(θ0)wpre

= P⊥
Ă

wpre + c0Ăh0 (56)

and

e− jϕq Tqwnew,q = e− jϕq EH
a(θq )|Ăq−

wnew,q

= e− jϕq ξq (I − PĂq−)a(θq)aH(θq)wnew,q

= cqe− jϕq Ăhq (57)

where c0 � ξ0aH(θ0)wpre and cq � ξqaH(θq)wnew,q , q =
1, . . . , Q. Thus, the wnew in (20) can be reexpressed as

wnew = P⊥
Ă

wpre + ĂHc (58)

where

H � [h0, h1, . . . , hQ ] ∈ C
(Q+1)×(Q+1) (59)

c � [c0, c1e− jϕ1, . . . , cQe− jϕQ ]T ∈ C
Q+1. (60)

This completes the derivation of (45).

APPENDIX B
DERIVATION OF (46)

For a given index i = 0, 1, . . . , Q, we first define J1i ∈
R

(2Q+3)×2 and J2i ∈ R
(2Q+3)×(2Q+1) as

J1i =
⎡
⎣ O2i×2

I2
O[2(Q−i)+1]×2

⎤
⎦ (61a)

J2i =
⎡
⎣ I2i O2i×[2(Q−i)+1]

O2×2i O2×[2(Q−i)+1]
O[2(Q−i)+1]×2i I2(Q−i)+1

⎤
⎦ . (61b)

Then, it is not hard to find that

Y(θi ) = C̆J1i , C̆i− = C̆J2i , i = 0, 1, . . . , Q. (62)

On this basis, we can expand ET
Y(θi )|C̆i−

as (63), shown on the
top of next page, where the matrix Vi , i = 0, 1, . . . , Q, has
also been specified.

From (63), it can be easily obtained that

ET
Y(θq )|C̆q−

ũq = C̆Vq ũq , q = 1, . . . , Q. (64)

In addition, note that EC̆0−|Y(θ0)
+ EY(θ0)|C̆0− = PC̆, or

equivalently I − EC̆0−|Y(θ0)
= I − PC̆ + EY(θ0)|C̆0− . Thus,

we have

(
I − ET

C̆0−|Y(θ0)

)
w̃pre = (

P⊥
C̆

+ C̆V0
)
w̃pre. (65)
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ET
Y(θi )|C̆i−

= P⊥
C̆i−

Y(θi)
(
YT(θi )P⊥

C̆i−
Y(θi )

)−1YT(θi )

= (
I − C̆i−

(
C̆T

i−C̆i−
)−1C̆T

i−
)
Y(θi)

(
YT(θi )P⊥

C̆i−
Y(θi )

)−1YT(θi )

= (
Y(θi) − C̆i−

(
C̆T

i−C̆i−
)−1C̆T

i−Y(θi)
)(

YT(θi )P⊥
C̆i−

Y(θi )
)−1YT(θi )

= (
C̆J1i − C̆J2i

(
C̆T

i−C̆i−
)−1C̆T

i−Y(θi)
)(

YT(θi )P⊥
C̆i−

Y(θi)
)−1YT(θi )

= C̆
(
J1i − J2i (C̆T

i−C̆i−)−1C̆T
i−Y(θi)

)(
YT(θi )P⊥

C̆i−
Y(θi)

)−1YT(θi )︸ ︷︷ ︸
�Vi

(63)

Combining (64) and (65), one can reshape the weight vector
w̃new in (42) as

w̃new = Z0w̃pre +
Q∑

q=1

Zq ũq

= (
I − ET

C̆0−|Y(θ0)

)
w̃pre +

Q∑
q=1

ET
Y(θq )|C̆q−

ũq

= (
P⊥

C̆
+ C̆V0

)
w̃pre +

Q∑
q=1

C̆Vq ũq

= P⊥
C̆

w̃pre + C̆Fα (66)

where

F � [V0, V1, . . . , VQ ] ∈ R
(2Q+3)×2N(Q+1) (67a)

α �
[
w̃T

pre, ũT
1 , . . . , ũT

Q

]T ∈ R
2N(Q+1). (67b)

This completes the derivation of (46).

APPENDIX C
DERIVATION OF (48)

If (47) is true, we have w̃new − w̃pre ∈ R(C̆). Then, one can
express w̃new − w̃pre as

w̃new − w̃pre = C̆μ (68)

where μ ∈ R
2Q+3 stands for the coefficient vector.

Recalling wnew = [IN , jIN ]w̃new, wpre = [IN , jIN ]w̃pre

and the expression of C̆, it is not hard to obtain the following
equation:

wnew − wpre = [IN , jIN ]C̆μ

= [(μ1 − jμ2)a(θ0), . . . ,

(μ2Q+1 − jμ2Q+2)a(θQ), μ2Q+3d(θ0)]
= [Ă, d(θ0)]�μ (69)

where μi stands for the i th element of μ, i = 1, . . . , 2Q + 3,
� ∈ C

(Q+2)×(2Q+3) is defined as

� �

⎡
⎢⎢⎢⎢⎢⎣

1 − j
1 − j

. . .
. . .

1 − j
1

⎤
⎥⎥⎥⎥⎥⎦. (70)

According to (69), one can readily find that

P⊥
[Ă, d(θ0)](wnew − wpre) = 0. (71)

This completes the derivation of (48).

APPENDIX D
DERIVATION OF (49)

Taking ρq = Lpre(θq , θ0) in (8), one can learn from [29]
that βq = 1, q = 1, . . . , Q. Then, it can be readily found
from (9) and (10) that

wnew,q = wpre, q = 1, . . . , Q. (72)

Based on (72), if ϕq = 0, q = 1, . . . , Q, is taken in (20), the
resulting wnew can be expressed as

wnew = T0wpre +
Q∑

q=1

Tqwpre =
⎛
⎝ Q∑

i=0

Ti

⎞
⎠ wpre. (73)

To further prove that wnew = wpre, we first define permuta-
tion matrices Ji , i = 0, 1, . . . , Q, as

Ji �

⎡
⎣ Ii

1
IQ−i

⎤
⎦ ∈ R

(Q+1)×(Q+1). (74)

Then, it is not hard to find that [a(θi ), Ăi−] = ĂJi

and
[
a(θi ), 0N×Q

] = [
0N×i , a(θi ), 0N×(Q−i)

]
Ji , i =

0, 1, . . . , Q. Thus, we have

Q∑
i=0

Ea(θi )|Ăi− =
Q∑

i=0

[a(θi ), 0]((ĂJi)
H
(ĂJi ))

−1(ĂJi )
H

=
Q∑

i=0

[a(θi ), 0](JH
i ĂHĂJi )

−1JH
i ĂH

=
Q∑

i=0

[a(θi ), 0]J−1
i (ĂHĂ)−1ĂH

=
Q∑

i=0

[0N×i , a(θi ), 0N×(Q−i)](ĂHĂ)−1ĂH

= Ă(ĂHĂ)−1ĂH

= PĂ. (75)
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Recalling the definitions of Ti (i = 0, 1, . . . , Q) in (16), one
can obtain that

Q∑
i=0

Ti = I − EH
Ă0−|a(θ0)

+
Q∑

q=1

EH
a(θq )|Ăq−

= I − EH
Ă0−|a(θ0)

− EH
a(θ0)|Ă0−

+
Q∑

i=0

EH
a(θi )|Ăi−

= I − PH
Ă

+ PH
Ă

= I. (76)

According to (73) and (76), one can see that wnew = wpre.
This completes the derivation of (49).

APPENDIX E
DERIVATION OF (50)

The same as the proof in Appendix D, one can see that
wnew,q = wpre and then w̃new,q = w̃pre, if taking ρq =
Lpre(θq, θ0), q = 1, . . . , Q. On this basis, setting φq = 0
(q = 1, . . . , Q) in (33) yields

ũq = w̃new,q = w̃pre, q = 1, . . . , Q. (77)

Then, the resulting w̃new in (42) can be expressed as

w̃new =
⎛
⎝ Q∑

i=0

Zi

⎞
⎠ w̃pre. (78)

Similar to the derivation in (75), it is not difficult to obtain
that

Ed̃(θ0)|C̆d̃−
+

Q∑
i=0

EY(θi )|C̆i− = PC̆ (79)

or equivalently

Q∑
q=1

ET
Y(θq )|C̆q−

= PC̆ − ET
d̃(θ0)|C̆d̃−

− ET
Y(θ0)|C̆0−

(80)

where

C̆d̃− � [Y(θ0), Y(θ1), . . . , Y(θQ)] ∈ R
2N×(2Q+2). (81)

Thus, we have⎛
⎝ Q∑

i=0

Zi

⎞
⎠ w̃pre =

⎛
⎝I − ET

C̆0−|Y(θ0)
+

Q∑
q=1

ET
Y(θq )|C̆q−

⎞
⎠ w̃pre

= (
I − ET

d̃(θ0)|C̆d̃−

)
w̃pre (82)

where we have used the fact that

PC̆ = ET
C̆0−|Y(θ0)

+ ET
Y(θ0)|C̆0−

. (83)

Recalling (78), the derivation of (50) can be completed.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anony-
mous reviewers for their valuable comments and suggestions.

REFERENCES

[1] O. L. Frost, III, “An algorithm for linearly constrained adaptive array
processing,” Proc. IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.

[2] J. Xu, G. Liao, S. Zhu, and L. Huang, “Response vector constrained
robust LCMV beamforming based on semidefinite programming,” IEEE
Trans. Signal Process., vol. 63, no. 21, pp. 5720–5732, Nov. 2015.

[3] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[4] C. Y. Chen and P. P. Vaidyanathan, “Quadratically constrained beam-
forming robust against direction-of-arrival mismatch,” IEEE Trans. Sig-
nal Process., vol. 55, no. 8, pp. 4139–4150, Aug. 2007.

[5] Z. L. Yu, W. Ser, M. H. Er, Z. Gu, and Y. Li, “Robust adaptive beam-
formers based on worst-case optimization and constraints on magnitude
response,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2615–2628,
Jul. 2009.

[6] Z. L. Yu, M. H. Er, and W. Ser, “A novel adaptive beamformer based on
semidefinite programming (SDP) with magnitude response constraints,”
IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1297–1307, May 2008.

[7] B. Liao, K. M. Tsui, and S. C. Chan, “Robust beamforming
with magnitude response constraints using iterative second-order
cone programming,” IEEE Trans. Antennas Propag., vol. 59, no. 9,
pp. 3477–3482, Sep. 2011.

[8] S. E. Nai, W. Ser, Z. L. Yu, and S. Rahardja, “A robust adaptive
beamforming framework with beampattern shaping constraints,” IEEE
Trans. Antennas Propag., vol. 57, no. 7, pp. 2198–2203, Jul. 2009.

[9] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive
beamforming using worst-case performance optimization: A solution to
the signal mismatch problem,” IEEE Trans. Signal Process., vol. 51,
no. 2, pp. 313–324, Feb. 2003.

[10] C. C. Gaudes, I. Santamaria, J. Via, E. M. Gomez, and T. S. Paules,
“Robust array beamforming with sidelobe control using support vector
machines,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 574–584,
Feb. 2007.

[11] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

[12] K. Chen, X. Yun, Z. He, and C. Han, “Synthesis of sparse planar arrays
using modified real genetic algorithm,” IEEE Trans. Antennas Propag.,
vol. 55, no. 4, pp. 1067–1073, Apr. 2007.

[13] D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus
genetic algorithms for phased array synthesis,” IEEE Trans. Antennas
Propag., vol. 52, no. 3, pp. 771–779, Mar. 2004.

[14] V. Murino, A. Trucco, and C. S. Regazzoni, “Synthesis of unequally
spaced arrays by simulated annealing,” IEEE Trans. Signal Process.,
vol. 44, no. 1, pp. 119–122, Jan. 1996.

[15] M. H. Er, “Array pattern synthesis with a controlled mean-square
sidelobe level,” IEEE Trans. Signal Process., vol. 40, no. 4, pp. 977–981,
Apr. 1992.

[16] C.-C. Tseng and L. J. Griffiths, “A simple algorithm to achieve desired
patterns for arbitrary arrays,” IEEE Trans. Signal Process., vol. 40,
no. 11, pp. 2737–2746, Nov. 1992.

[17] C. A. Olen and R. T. Compton, Jr., “A numerical pattern synthesis
algorithm for arrays,” IEEE Trans. Antennas Propag., vol. 38, no. 10,
pp. 1666–1676, Oct. 1990.

[18] P. Y. Zhou and M. A. Ingram, “Pattern synthesis for arbitrary arrays
using an adaptive array method,” IEEE Trans. Antennas Propag., vol. 47,
no. 5, pp. 862–869, May 1999.

[19] X. Zhang, Z. He, X.-G. Xia, B. Liao, X. Zhang, and Y. Yang, “OPARC:
Optimal and precise array response control algorithm—Part I: Funda-
mentals,” IEEE Trans. Signal Process., vol. 67, no. 3, pp. 652–667,
Feb. 2019.

[20] X. Zhang, Z. He, X.-G. Xia, B. Liao, X. Zhang, and Y. Yang, “OPARC:
Optimal and precise array response control algorithm—Part II: Multi-
points and applications,” IEEE Trans. Signal Process., vol. 67, no. 3,
pp. 668–683, Feb. 2019.

[21] H. K. Van Trees, Optimum Array Processing. New York, NY, USA:
Wiley, 2002.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[23] H. Lebret and S. Boyd, “Antenna array pattern synthesis via convex
optimization,” IEEE Trans. Signal Process., vol. 45, no. 3, pp. 526–532,
Mar. 1997.

[24] B. Fuchs, “Application of convex relaxation to array synthesis prob-
lems,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 634–640,
Feb. 2014.



4616 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 7, JULY 2019

[25] X. Zhang, Z. He, X. Zhang, and W. Peng, “High-performance beam-
pattern synthesis via linear fractional semidefinite relaxation and quasi-
convex optimization,” IEEE Trans. Antennas Propag., vol. 66, no. 7,
pp. 3421–3431, Jul. 2018.

[26] S. E. Nai, W. Ser, Z. L. Yu, and H. Chen, “Beampattern synthesis for
linear and planar arrays with antenna selection by convex optimiza-
tion,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3923–3930,
Dec. 2010.

[27] F. Wang, V. Balakrishnan, P. Y. Zhou, J. J. Chen, R. Yang, and C. Frank,
“Optimal array pattern synthesis using semidefinite programming,” IEEE
Trans. Signal Process., vol. 51, no. 5, pp. 1172–1183, May 2003.

[28] X. Zhang, Z. He, B. Liao, X. Zhang, Z. Cheng, and Y. Lu, “A2RC:
An accurate array response control algorithm for pattern synthesis,”
IEEE Trans. Signal Process., vol. 65, no. 7, pp. 1810–1824, Apr. 2017.

[29] X. Zhang, Z. He, B. Liao, X. Zhang, and W. Peng, “Pattern synthesis
for arbitrary arrays via weight vector orthogonal decomposition,” IEEE
Trans. Signal Process., vol. 66, no. 5, pp. 1286–1299, Mar. 2018.

[30] X. Zhang, Z. He, B. Liao, X. Zhang, and W. Peng, “Pattern synthesis
with multipoint accurate array response control,” IEEE Trans. Antennas
Propag., vol. 65, no. 8, pp. 4075–4088, Aug. 2017.

[31] X. Zhang, Z. He, B. Liao, Y. Yang, J. Zhang, and X. Zhang, “Flexible
array response control via oblique projection,” IEEE Trans. Signal
Process., vol. 67, no. 12, pp. 3126–3139, Jun. 2019.

[32] R. T. Behrens and L. L. Scharf, “Signal processing applications of
oblique projection operators,” IEEE Trans. Signal Process., vol. 42,
no. 6, pp. 1413–1424, Jun. 1994.

Xuejing Zhang (S’17) was born in Shijiazhuang,
Hebei, China. He received the B.S. degree in elec-
trical engineering from Huaqiao University, Xiamen,
China, in 2011 and the M.S. degree in signal
and information processing from Xidian University,
Xi’an, China, in 2014. He is currently pursuing the
Ph.D. degree in signal and information processing
with the School of Information and Communication
Engineering, University of Electronic Science and
Technology of China (UESTC), Chengdu, China.

Since 2017, he has been a Visiting Student with
the University of Delaware, Newark, DE, USA. His current research interests
include array signal processing and wireless communications.

Zishu He (M’11) was born in Chengdu, Sichuan,
China, in 1962. He received the B.S., M.S., and
Ph.D. degrees in signal and information processing
from the University of Electronic Science and Tech-
nology of China (UESTC), Chengdu, in 1984, 1988,
and 2000, respectively.

He is currently a Professor with the School
of Information and Communication Engineering,
UESTC. His current research interests include array
signal processing, digital beam forming, the the-
ory on multiple-input multiple-output (MIMO) com-

munication and MIMO radar, adaptive signal processing, and interference
cancellation.

Bin Liao (S’09–M’13–SM’16) received the B.Eng.
and M.Eng degrees in electronic engineering from
Xidian University, Xian, China, in 2006 and 2009,
respectively, and the Ph.D. degree in electronic engi-
neering from The University of Hong Kong, Hong
Kong, in 2013.

From 2013 to 2014, he was a Research Assis-
tant with the Department of Electrical and Elec-
tronic Engineering, The University of Hong Kong.
From 2016 to 2016, he was a Research Scientist
with the Department of Electrical and Electronic

Engineering, The University of Hong Kong. He is currently an Associate
Professor with the Guangdong Key Laboratory of Intelligent Information
Processing, Shenzhen University, Shenzhen, China. His current research inter-
ests include sensor array processing, adaptive filtering, convex optimization,
with applications to radar, navigation, and communications.

Dr. Liao was a recipient of the Best Paper Award at the 21st International
Conference on Digital Signal Processing (2016 DSP) and 22nd International
Conference on Digital Signal Processing (2017 DSP). He is an Associate Edi-
tor of IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS,
IET Signal Processing, Multidimensional Systems and Signal Processing, and
IEEE ACCESS.

Xuepan Zhang was born in Shijiazhuang, Hebei,
China. He received the B.S. and Ph.D. degrees in
electrical engineering from the National Labora-
tory of Radar Signal Processing, Xidian University,
Xi’an, China, in 2010 and 2015, respectively.

He is currently a Principal Investigator with
the Qian Xuesen Laboratory of Space Technology,
Beijing, China. His current research interests include
synthetic aperture radar (SAR), ground moving tar-
get indication (GMTI), and deep learning.

Yue Yang (S’17) was born in Suining, Sichuan,
China. She received the B.Eng. degree in electronic
engineering from the University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in 2015, where she is currently pursuing the
Ph.D. degree in signal and information processing
with the School of Information and Communication
Engineering.

Since 2019, she has been a Visiting Student with
the National University of Singapore, Singapore. Her
current research interests include synthetic aperture

radar (SAR) imaging, sparse signal reconstruction, and statistical signal
processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


