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Robust Sidelobe Control via Complex-Coefficient
Weight Vector Orthogonal Decomposition

Xuejing Zhang , Student Member, IEEE, Zishu He , Member, IEEE, Xuepan Zhang , and Julan Xie

Abstract— This paper presents a new array response control
algorithm named complex-coefficient weight vector orthogonal
decomposition (C2-WORD), and its application to robust sidelobe
control and synthesis in the presence of steering vector mismatch.
The proposed C2-WORD algorithm is a modified version of the
existing WORD approach. We extend WORD by allowing a
complex-valued combining coefficient in C2-WORD, and then
determine the optimal combining coefficient by maximizing
the white noise gain. Moreover, assuming that the steering
vector uncertainty is norm-bounded, we further devise a robust
C2-WORD algorithm, which is able to precisely control the upper
boundary response level of a sidelobe point as desired. To enhance
the practicality of the proposed robust C2-WORD algorithm,
we also study how to determine the upper norm boundary
of steering vector uncertainty under various mismatch circum-
stances. By applying the robust C2-WORD algorithm iteratively,
a robust sidelobe synthesis approach is developed. Contrary to
the existing approaches, the devised robust C2-WORD algorithm
offers an analytical expression of weight vector updating and can
work starting from an arbitrarily specified weight. Simulation
results are presented to validate the effectiveness and good per-
formance of the robust C2-WORD algorithm on sidelobe control
and synthesis in the presence of steering vector uncertainties.

Index Terms— Array pattern synthesis, robust sidelobe control,
robust sidelobe synthesis, steering vector mismatch.

I. INTRODUCTION

ARRAY antenna has found numerous applications to radar,
navigation, and wireless communication. Determining

the complex weights for array elements to achieve the desired
beampattern is a fundamental problem [1]–[3]. Quite a number
of approaches to array response control or pattern synthesis
have been reported during the past several decades [4]–[7].
In most existing work, the array steering vectors are assumed
to be known exactly. Under practical circumstances, however,
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the actual steering vectors may be different from the assumed
(or ideal) ones. The steering vector uncertainty can be caused
by various factors, such as, channel gain-phase mismatch,
element position mismatch, and mutual coupling effect. The
existence of steering vector uncertainties may lead to perfor-
mance degradation for the existing array response control or
pattern synthesis approaches.

During the past several decades, quite a number of robust
algorithms have been developed to control array response
or synthesize desirable beampatterns with steering vector
uncertainties. For example, Yan and Hovem [8] proposed a
powerful robust approach to synthesizing array patterns with
low sidelobes in the presence of unknown array manifold
perturbations. This approach optimizes the worst-case per-
formance of sidelobe response by formulating the robust
pattern synthesis problem as a convex programming (CP)
form. Nevertheless, this method can only synthesize uniform
sidelobes and may not work well if the desired sidelobe
shape is nonuniform. A novel robust beampattern synthesis
method is proposed in [9], where the mutual coupling effect
is considered and two optimization methods are provided.
Nevertheless, the mutual coupling matrix has to be precalcu-
lated in this approach before the synthesis process. Efficient
robust broadband antenna array pattern synthesis techniques
in the presence of array imperfections have been presented
in [10], where nine different optimization criteria are provided
with each one having particular advantage and disadvantage
for certain applications. In contrast to the above deterministic
pattern synthesis methods, there are also some excellent works
considering robust adaptive beamforming in the presence of
steering vector uncertainties (see [11]–[15]). In this scenario,
it is usually required to shape satisfactory beampatterns and
reject the undesirable interferences. In addition, it should be
pointed out that our discussion is different from the pattern
tolerance analyses studied in [16]–[20], where the weight
vector (but not the steering vector) suffers from perturbation.

In general, the existing methods cannot flexibly control the
array response starting from an arbitrarily specified weight
vector. As a result, the weight vector has to be completely
redesigned even if only a slight change of the desired pat-
tern is needed. This motivates us to develop a new array
response control algorithm in the presence of steering vec-
tor perturbations. Toward this end, in this paper, we first
develop a scheme named complex-coefficient weight vec-
tor orthogonal decomposition (C2-WORD), by allowing a
complex-valued combining coefficient in the existing WORD
algorithm in [21]. The C2-WORD algorithm has an analytical
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solution and performs better than WORD in the sense of
white noise gain (WNG) [22]–[24]. On this basis, we devise a
robust C2-WORD algorithm. Starting from any given weight
vector, the proposed robust C2-WORD algorithm can control
the array response level of a single sidelobe point when
array suffers from unknown steering vector mismatches. More
specifically, assuming that the steering vector perturbation is
norm-bounded by a known constant, we analyze the worst-case
(upper and lower) boundaries of array response level. Then,
given a sidelobe angle to be controlled, its desired upper
response level, and an arbitrarily specified weight vector, we
follow the model of C2-WORD and propose to accurately con-
trol the worst-case upper boundary response level as desired.
As presented later, the robust C2-WORD algorithm offers an
analytical expression of weight vector updating and results
in small worst-case perturbation on the array response. In
addition, inheriting the advantages of C2-WORD, our robust
C2-WORD approach results in small pattern variations on
the uncontrolled points. To enhance the practicality of the
devised algorithm, we also give a presention on how to
determine the norm boundary of steering vector uncertainty,
in the cases where array suffers from channel gain-phase
mismatch, element position mismatch, and mutual coupling
effect. By applying the robust C2-WORD algorithm succes-
sively, we devise an effective robust sidelobe synthesis method.
Simulations show that our algorithm works well under various
circumstances.

This paper is organized as follows. The proposed robust
C2-WORD algorithm is presented in Section II. In Section III,
some practical considerations are provided to improve the
practicality of the robust C2-WORD algorithm. The appli-
cation of robust C2-WORD to robust sidelobe synthesis is
discussed in Section IV. Representative simulations are car-
ried out in Section V and the conclusions are drawn in
Section VI.

Notations: We use bold upper case and lower case letters
to represent matrices and vectors, respectively. In particular,
we use I to denote the identity matrix. j �

√−1. (·)T

and (·)H stand for the transpose and Hermitian transpose,
respectively. | · | denotes the absolute value and ‖ · ‖2 denotes
the l2 norm. We use B(i, l) for the element at the i th row
and lth column of matrix B. �(·) and �(·) denote the real
and imaginary parts, respectively. det(·) is the determinant
of a matrix. ∝ means direct proportion. R and C denote
the sets of all real and complex numbers, respectively. R(·)
returns the column space of the input matrix, and R⊥(·) is the
orthogonal complementary space of R(·). PZ and P⊥

Z represent
the projection matrices onto R(Z) and R⊥(Z), respectively.
� (·) returns the argument of a complex number. Diag(·)
represents the diagonal matrix with the components of the
input vector as the diagonal elements. Finally, λmax(·) returns
the largest eigenvalue of the input matrix.

II. ROBUST SIDELOBE CONTROL VIA C2-WORD

In order to present the proposed robust sidelobe control
algorithm, we first introduce the WORD algorithm in [21] and
develop the concept of C2-WORD algorithm.

A. WORD and C2-WORD

To begin with, we first define the array power response
as L(θ, θ0) � |wHa(θ)|2/|wHa(θ0)|2, where w is the weight
vector, θ0 is the main beam axis, a(θ) stands for the nominal
steering vector in direction θ . The weight vector orthogonal
decomposition (WORD) algorithm in [21] is able to flexibly
and precisely control the array power response level at a
prescribed angle on the basis of a given weight vector. More
specifically, for a given weight vector wk−1, an angle θk to be
controlled and its desired (normalized) power response level
ρk , WORD algorithm realizes the array response control task
Lk(θk, θ0) = ρk , by updating its weight vector as

wk = [wk−1,⊥ wk−1,‖][1 βk]T, βk ∈ R (1)

where Lk(θ, θ0) represents the array power response of the
weight vector wk , wk−1,⊥ and wk−1,‖ are defined as

wk−1,⊥ � P⊥[a(θk)]wk−1, wk−1,‖ � P[a(θk)]wk−1 (2)

with k denoting the step index. In (1), the real-valued βk can be
selected to be either βa or βb, both of which can be determined
by the desired level ρk at θk . In [21], it has been derived that

βa = −�(Bk(1, 2)) + d

Bk(2, 2)
, βb = −�(Bk(1, 2)) − d

Bk(2, 2)
(3)

where Bk and d satisfy

Bk =
[

wH⊥a(θk)

wH‖ a(θk)

][
wH⊥a(θk)

wH‖ a(θk)

]H

−ρk

[
wH⊥a(θ0)

wH‖ a(θ0)

][
wH⊥a(θ0)

wH‖ a(θ0)

]H

(4)

d =
√

�2(Bk(1, 2)) − Bk(1, 1)Bk(2, 2). (5)

In (4), w⊥ and w‖ are the short notations of wk−1,⊥ and
wk−1,‖, respectively. To obtain the ultimate expression of wk

that adjusts the response level of θk to ρk , the one (either βa

or βb) that minimizes F(β) = ‖P⊥
wk−1

wk/‖wk‖2‖2
2 is selected.

In the above WORD algorithm, only two candidates (i.e., βa

and βb) are available for the parameter βk , and both of them
are real-valued. In fact, there exist complex-valued βks leading
to the same response level at θk as that of the real-valued βa

or βb in (3). As a result, it is more reasonable to assign a
complex-valued βk in the WORD scheme. This leads to the
complex-coefficient weight vector orthogonal decomposition
(C2-WORD) algorithm as presented next.

More specifically, given the previous weight vector wk−1,
in order to adjust the array response level of θk to its desired
level ρk , we propose to update the weight vector as

wk = [w⊥ w‖][1 βk]T, βk ∈ C. (6)

Different from the weight vector update of WORD in (1), the
parameter βk in (6) is complex-valued but not limited to be
real-valued, although we have designated an identical notation
(i.e., βk).

To further obtain the trajectory of all the qualified βks
satisfying the prescribed array response control requirement,
we substitute (6) into Lk(θk, θ0) = ρk and obtain zH

k Bkzk = 0,
where zk � [1 βk]T, Bk is a 2 × 2 Hermitian matrix given
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Fig. 1. Geometrical distribution of βk in complex plane.

in (4). After some calculation, it is not hard to derive that the
trajectory set of βk in (6) is a circle Cβk

Cβk = {βk|‖[�(βk),�(βk)]T − cβk ‖2 = Rβk } (7)

with center

cβk = 1

Bk(2, 2)

[−� (Bk(1, 2))
� (Bk(1, 2))

]
(8)

and radius

Rβk = √−det(Bk)
/|Bk(2, 2)|. (9)

Fig. 1 presents a geometric interpretation of the above
result. One can see that the existing WORD algorithm selects
the parameter βk from the real-valued elements of Cβk . For
C2-WORD, we have extended the feasible set to complex
domain. By doing so, the resulting performance may be
improved, since it is possible to select a more appropriate βk

that may not be real-valued.
Moreover, the trajectory set of βk in (7) indicates that

there exist infinitely many solutions of (complex-valued) βk

adjusting the array response level of θk to its desired value ρk .
To select an optimal βk,
, we take the WNG into consideration
and formulate the following constrained problem as

max
βk

G(wk) =
∣∣wH

k a(θ0)
∣∣2

‖wk‖2
2

(10a)

s.t. wk = [w⊥ w‖][1 βk]T (10b)

βk ∈ Cβk (10c)

where G(wk) represents the corresponding WNG of the weight
vector wk , Cβk is given in (7). Although the problem (10) is
nonconvex, its optimal solution can be analytically expressed
as

βk,
 = βk,l � arg max
βk∈Cβk

|βk | = (|cβk | + Rβk )e
j � g(cβk ) (11)

see appendix A for the derivations. In (11), g(·) is a function
satisfying g(c) = c(1) + jc(2) for a 2-D input vector, see
g−1(βk,l ) in Fig. 1 for the location of the optimal βk,
.

Algorithm 1 C2-WORD Algorithm
1: prescribe beam axis θ0 and index k, give the previous

weight vector wk−1, direction θk and the corresponding
desired level ρk

2: determine the optimal βk,
 in (11)
3: output the new weight vector wk in (12)

Once the optimal βk,
 is determined, we can express the
ultimate weight vector of C2-WORD as

wk = [w⊥ w‖][1 βk,
]T. (12)

The above C2-WORD algorithm results in small pattern varia-
tions on the uncontrolled angles, and performs at least as good
as the state-of-the-art WORD approach. More importantly,
the C2-WORD algorithm plays a fundamental role in the later
discussions. To make it clear, we summarize the C2-WORD
algorithm in Algorithm 1.

B. Formulation of Robust Sidelobe Control

The C2-WORD algorithm developed in Section II-A can
control the array response level of a given point in the absence
of steering vector uncertainties. To realize array response con-
trol in the case when steering vector suffers from perturbation,
we next formulate the problem of robust sidelobe control.
For the convenience of later derivations, we first define the
normalized magnitude response as

Va(θ) = |wHa(θ)|/|wHa(θ0)|. (13)

Note that the above Va(θ) is different from the normalized
power response L(θ, θ0) defined in Section II-A. One can
readily find that V 2

a (θ) = L(θ, θ0).
Clearly, Va(θ) describes the array magnitude response

in the absence of array uncertainties. In practice, however,
the steering vector is usually influenced by the antenna array
imperfections, such as, gain-phase mismatch, element position
mismatch, mutual coupling effect, and so on. In this case,
the actual steering vector, denoted by b(θ), is given by

b(θ) = a(θ) + �(θ) (14)

where �(θ) is the unknown steering vector uncertainty that
can be varied with θ . The actual normalized magnitude
response, denoted by Vb(θ), can be expressed as

Vb(θ) = |wHb(θ)|/|wHb(θ0)| (15)

which is different from Va(θ) under normal circumstances.
Note that in (15), we keep on using the beamformer output
of θ0 as the normalization factor, although the actual beam
axis may have deviated slightly from θ0 due to the influence
of steering vector uncertainties. In robust sidelobe control,
we consider how to make the actual magnitude response Vb(θ)
lower than specific levels in certain sidelobe regions.
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C. Boundary Analysis on Array Response

To proceed, we first present a boundary analysis on the
actual magnitude response Vb(θ). To do so, we reasonably
assume that the uncertainty �(θ) is norm-bounded as

‖�(θ)‖2 ≤ ε(θ) (16)

where ε(θ) is a known constant at θ . Then, according to the
triangle inequality property, we have

|wHb(θ)| = |wH(a(θ) + �(θ))|
≤ |wHa(θ)| + |wH�(θ)|
≤ |wHa(θ)| + ‖w‖2·‖�(θ)‖2

≤ |wHa(θ)| + ε(θ)‖w‖2. (17)

Similarly

|wHb(θ)| = |wH(a(θ) + �(θ))|
≥ |wHa(θ)| − |wH�(θ)|
≥ |wHa(θ)| − ‖w‖2·‖�(θ)‖2

≥ |wHa(θ)| − ε(θ)‖w‖2. (18)

Combining (17) and (18), one can readily find that

Vb(θ) = |wH(a(θ) + �(θ))|
|wH(a(θ0) + �(θ0))|

≤ |wHa(θ)| + ε(θ)‖w‖2

|wHa(θ0)| − ε(θ0)‖w‖2

= Va(θ) + ε(θ) · ‖w‖2/|wHa(θ0)|
1 − ε(θ0) · ‖w‖2/|wHa(θ0)|

� Vu(θ) (19)

and

Vb(θ) ≥ |wHa(θ)| − ε(θ)‖w‖2

|wHa(θ0)| + ε(θ0)‖w‖2

= Va(θ) − ε(θ) · ‖w‖2/|wHa(θ0)|
1 + ε(θ0) · ‖w‖2/|wHa(θ0)|

� Vl(θ). (20)

Compactly, we have

0 ≤ Vl(θ) ≤ Vb(θ) ≤ Vu(θ) (21)

where Vu(θ) and Vl(θ) stand for the worst-case upper and
lower boundaries of magnitude response, respectively. Accord-
ing to (21), the actual response Vb(θ) fluctuates in the range
[Vl(θ), Vu(θ)]. In addition, it should be noted that we have
implicitly assumed in (19) that

|wHa(θ0)| − ε(θ0)‖w‖2 > 0. (22)

Otherwise, it leads to Vu(θ) < 0 and (19) does not hold true.

D. Formulation of Robust One-Point Sidelobe Control

In Section II-C, a boundary analysis on the array response is
presented. We next formulate the problem of robust one-point
sidelobe control, i.e., making the response level of a given
sidelobe point lower than a specific value in the presence of
steering vector uncertainties.

More specifically, denote the desired magnitude upper
beampattern by Vd(θ). Give a previous weight vector wk−1 and
a sidelobe angle θk to be controlled, where the subscript k is
the step index. It is required to find a new weight vector wk that
makes the actual (magnitude) response level of θk lower than
Vd(θk). To simplify notations, in sequel, we follow the usages
of Va(θ), Vb(θ), Vu(θ) and Vl(θ) defined in the two preceding
sections, and designate them to stand for the counterparts of
wk . Then, the problem of one-point robust sidelobe control
can be formulated as

find wk (23a)

s.t Vb(θk) ≤ Vd(θk). (23b)

Note that there exist unknown perturbations on the steering
vector [see (14)]. As a result, it is not easy to adjust Vb(θk)
as desired.

To tackle problem (23), we recall (21) and formulate a
conservative version of (23) as

find wk (24a)

s.t Vu(θk) ≤ Vd(θk) (24b)

where the maximum possible response level at θk [i.e., Vu(θk)]
is restricted to be lower than Vd(θk). Since Vb(θk) is not greater
than Vu(θk), one learns that the original constraint (23b) is
satisfied if only (24b) is true.

One possible way to make the constraint (24b) qualified is to
take Vu(θk) as its minimum value, which may be close to zero.
By doing so, the actual response Vb(θk) would also approach
to zero because of the constraint (21). As a result, it may
broaden the main lobe of Vb(θ) and/or lower the resulting
WNG. To alleviate this drawback, a high value of Vb(θk) is
expected under the condition that (24b) is satisfied. As afore-
mentioned, Vb(θk) fluctuates in the range [Vl(θk), Vu(θk)].
Then, a reasonable way to elevate Vb(θk) is to lift both the
lower boundary response level Vl(θk) and the upper boundary
response level Vu(θk). According to (24b), the maximum of
Vu(θk) is Vd(θk), and we can improve the general level of
Vb(θk) by fixing Vu(θk) as Vd(θk) and then solve the following
optimization problem:

max
wk

Vl(θk) (25a)

s.t. Vu(θk) = Vd(θk). (25b)

For the given Va(θk), ε(θ0), and ε(θk), it is not hard to
observe from (19) and (20) that

Vu(θk) − Vl(θk) ∝ ‖wk‖2∣∣wH
k a(θ0)

∣∣ . (26)

Thus, one can reformulate problem (25) as

max
wk

G(wk) =
∣∣wH

k a(θ0)
∣∣2

‖wk‖2
2

(27a)

s.t. Vu(θk) = Vd(θk) (27b)

where G(wk) stands for the WNG in the absence of steering
vector uncertainties, and has also been used in problem (10)
in Section II-A. Since ‖wk‖2/|wH

k a(θ0)| is directly propor-
tional to the pattern perturbations, i.e., Vu(θk) − Va(θk) and
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Va(θk) − Vl(θk), the solution of problem (27) results in small
pattern perturbations for the given ε(θ0) and ε(θk).

Recalling the definition of Vu(θk) in (19), we can reformu-
late the robust one-point sidelobe control problem (27) as

max
wk

G(wk) =
∣∣wH

k a(θ0)
∣∣2

‖wk‖2
2

(28a)

s.t. Va(θk) = Vw(θk) (28b)

where Vw(θ) is defined as

Vw(θ) � Vd(θ) − γ (θ)‖wk‖2/
∣∣wH

k a(θ0)
∣∣ (29)

with γ (θ) � Vd(θ)ε(θ0) + ε(θ). Clearly, the nonconvex
problem (28) maximizes WNG with specific constraint on
the (ideal) response level at θk . This is similar to the response
control problem in the absence of steering vector uncertainties,
as formulated in Section II-A. Nevertheless, different from the
array response control problem discussed in Section II-A, it
should be noted that the right side of the constraint (28b),
i.e., Vw(θk), depends on the optimization variable wk as
well. In addition, the previous weight vector wk−1 is not
taken into consideration in the formulating problem (28).
As a result, it may lead to large pattern variations at the
uncontrolled points, comparing to the previous beampattern
response. Recalling that the C2-WORD scheme devised in
Section II-A maximizes WNG and results in small pattern
variations, it provides some inspiration to use C2-WORD
algorithm to realize one-point sidelobe control, as detailed in
the next section.

E. Robust C2-WORD Algorithm

In this section, we propose a new method to realize robust
one-point sidelobe control and name it as robust C2-WORD
algorithm. The devised algorithm is built on the foundation
of the C2-WORD scheme developed in Section II-A. More
importantly, it offers an analytical expression for the new
weight vector wk and results in small pattern variations at
the uncontrolled points.

To begin with, we recall C2-WORD scheme in Section II-A,
and incorporate a new constraint into (28) as

max
βk

G(wk) (30a)

s.t. Va(θk) = Vw(θk) (30b)

wk = [w⊥ w‖][1 βk]T, βk ∈ C (30c)

where the constraint of orthogonal decomposition has been
added in (30c). Once the optimal βk,	 of (30) is obtained, we
can express the ultimate weight vector wk as

wk = [w⊥ w‖][1 βk,	]T. (31)

It should be emphasized that the resulting weight vector (31)
may not be the global optimal solution of problem (28), since
we have assigned a new constraint in problem (30). In spite of
that, we will show later that the obtained wk in (31) performs
well on robust sidelobe control with small pattern variations
at the uncontrolled points. The remaining problem is how to
determine the optimal βk,	 of (30), as presented next.

For the sake of subsequent convenience, we first define

ρa � V 2
a (θk) (32)

which represents the resulting ideal power response level at
θk . Then, for the given θ0, θk , wk−1, Vd(θk), ε(θ0) and ε(θk),
we can indirectly determine the optimal βk,	 by finding the
corresponding ρa when problem (30) is solved.

After some calculation, one can see that the ultimate ρa in
problem (30) satisfies the following quartic polynomial:
A2ρ4

a + (2AC − B2)ρ3
a + (2AE − 2B D + C2)ρ2

a

+ (2C E − D2)ρa + E2 = 0. (33)

The derivation of (33) is presented in appendix B, where the
expressions of A, B, C, D, E are also specified [see (79)]. In
fact, there are four candidates of ρa satisfying (33), and they
can be analytically expressed; see the following lemma to find
their specific expressions.

Lemma 1: The four roots xi (i = 1, 2, 3, 4) for the follow-
ing general quartic equation:

ax4 + bx3 + cx2 + dx + e = 0, (a �= 0) (34)

are given by

x1 = − b

4a
+ S +

√
−4S2 − 2 p − q

S

2
(35a)

x2 = − b

4a
+ S −

√
−4S2 − 2 p − q

S

2
(35b)

x3 = − b

4a
− S +

√
−4S2 − 2 p + q

S

2
(35c)

x4 = − b

4a
− S −

√
−4S2 − 2 p + q

S

2
(35d)

where

p � 8ac − 3b2

8a2 (36a)

q � b3 − 4abc + 8a2d

8a3 (36b)

S �

√
− 2

3 p + 1
3a

(
Q + ζ0

Q

)
2

(36c)

with

Q �
3
√(

ζ1 +
√

ζ 2
1 − 4ζ 3

0

)/
2 (37a)

ζ0 � c2 − 3bd + 12ae (37b)

ζ1 � 2c3 − 9bcd + 27b2e + 27ad2 − 72ace. (37c)

Proof: See [25].
According to (35) in Lemma 1, we can obtain the four

solutions of quartic equation (33), and denote them as
ρa,1, ρa,2, ρa,3, ρa,4, respectively. Recalling our previous dis-
cussions, we note that the qualified ρa is real-valued and
satisfies

ρa ∈ [0, V 2
d (θk)

)
. (38)
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Algorithm 2 Robust C2-WORD Algorithm
1: prescribe beam axis θ0 and index k, give the previous

weight vector wk−1, sidelobe angle θk , the desired (mag
nitude) upper response level Vd(θk) and the steering
vector uncertainty boundaries ε(θ0) and ε(θk)

2: construct quartic equation (33) and find its solutions (i.e.,
ρa,1, ρa,2, ρa,3, ρa,4) according to Lemma 1

3: determine the ultimate ρa,	 by solving problem (39)
4: apply C2-WORD algorithm to adjust the ideal array

response level of θk to ρa,	, see Algorithm 1
5: output the new weight vector wk in (31)

In addition, recalling the expression of Vw(θ) in (29), one can
readily know that ρa is directly proportional to G(wk). Thus,
we can determine the optimal ρa,	 by solving the following
simple problem:

max
ρa

ρa (39a)

s.t. ρa ∈ {ρa,1, ρa,2, ρa,3, ρa,4} (39b)

ρa ∈ [0, V 2
d (θk)). (39c)

Once the optimal ρa,	 is determined, we can remove the
constraint (30b) and reformulate the problem (30) as

max
βk

G(wk) (40a)

s.t. Lk(θk, θ0) = ρa,	 (40b)

wk = [w⊥ w‖][1 βk]T, βk ∈ C. (40c)

The above problem (40) has an analytical solution, see
problem (10) and (11) in Section II-A for details. Thus,
we obtained the ultimate βk,	 and its corresponding weight
vector wk in (31). This completes the robust one-point
response control at a given sidelobe point. Finally, we summa-
rize the proposed robust C2-WORD algorithm in Algorithm 2.

F. Restriction Between Vd(θk) and ε(θk)

In Section II-E, we use the C2-WORD scheme to realize
robust sidelobe control at a preassigned angle θk . It should
be pointed out that there exists an implicit restriction between
the minimum reachable upper response level Vd(θk) and the
steering vector uncertainty norm boundary ε(θk), as investi-
gated next.

To begin with, we note that Va(θk) ≥ 0. Since Va(θk)
is generally in proportional to Vu(θk), we can obtain the
minimum reachable level of Vd(θk) [denoted as V d(θk)] by
setting Va(θk) = 0. Recalling (29) and (30b), V d (θk) is given
by

V d(θk) = γ (θk)‖wk‖2/
∣∣wH

k a(θ0)
∣∣

= (V d(θk)ε(θ0) + ε(θk)) · ‖wk‖2/
∣∣wH

k a(θ0)
∣∣

= (V d(θk)ε(θ0) + ε(θk)) · ‖w⊥‖2/
∣∣wH⊥a(θ0)

∣∣ (41)

where we have utilized the fact that β	 = 0 and wk = w⊥
when Va(θk) = 0 applies. According to (41), Vd(θk) should
be taken to satisfy

Vd (θk) ≥ V d (θk) = ε(θk)‖w⊥‖2∣∣wH⊥a(θ0)
∣∣− ε(θ0)‖w⊥‖2

(42)

which specifies the restriction between Vd(θk) and ε(θk) for
the given ε(θ0) and a(θ0). Clearly, the lesser ε(θk) is, the lower
level Vd(θk) can be taken.

Note from (42) that the minimum reachable level of
Vd(θk) [i.e, V d (θk)] depends on the previous weight vector
wk−1 as well. Utilizing the Cauchy–Schwarz inequality that
‖w⊥‖2‖a(θ0)‖2 ≥ |wH⊥a(θ0)|, one can further obtain

Vd (θk) ≥ V d (θk) ≥ ε(θk)

‖a(θ0)‖2 − ε(θ0)
� χ(θk) (43)

where the introduced χ(θk) is independent of the previous
weight vector and specifies a lower boundary of V d(θk). Note
that the resulting χ(θk) in (43) measures a general value of
the minimum achievable level of Vd(θk), although it may not
be reached for an arbitrarily specified previous weight wk−1.

In addition, according to the observation in (42), we know
that there always exists a qualified solution ρ̆a for (33) falling
within the range [0, V 2

d (θk)) [as formulated in (38)], provided
that

Vd (θk) ≥ ε(θk)‖w⊥‖2∣∣wH⊥a(θ0)
∣∣− ε(θ0)‖w⊥‖2

. (44)

See appendix C for the derivations. If the value of Vd(θk) is
too small [for example, smaller than χ(θk) in (43)], it is not
guaranteed to obtain a qualified ρa falling within the range
[0, V 2

d (θk)).

III. PRACTICAL CONSIDERATION

In Section II, a robust C2-WORD algorithm is devised to
adjust the response level of a preassigned sidelobe point in
the presence of steering vector perturbation. As aforemen-
tioned, the steering vector uncertainty �(θ) is assumed to
be norm-bounded by a known constant ε(θ). To enhance
the practicality of the robust C2-WORD algorithm, we next
consider how to determine �(θ) and the corresponding ε(θ)
in practical applications with some reasonable assumptions.

In this paper, we assume that the array suffers from chan-
nel gain-phase mismatch, element position mismatch, mutual
coupling effect, or their superpositions. On this basis, we can
model the actual steering vector b(θ) in (14) as

b(θ) = C(θ)a(θ) = a(θ) + [C(θ) − I]a(θ)︸ ︷︷ ︸
�(θ)

(45)

where C(θ) is a certain matrix whose elements may vary with
θ . Let us define

E(θ) � C(θ) − I. (46)

Then according to (45), we have �(θ) = E(θ)a(θ), from
which one can further derive that

‖�(θ)‖2 = ‖E(θ)a(θ)‖2 ≤ ‖E(θ)‖2‖a(θ)‖2 (47)

where ‖E(θ)‖2 is the spectral matrix norm [26] of E(θ)
satisfying

‖E(θ)‖2 =
√

λmax(EH(θ)E(θ)). (48)

Clearly, if E(θ) is known or can be estimated, we can set the
corresponding ε(θ) in (16) as

ε(θ) = ‖E(θ)‖2‖a(θ)‖2. (49)
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However, this is not a common occurrence, since
E(θ) [or C(θ)] is usually a random matrix with certain
statistical model for its entries [27]. In this case, we can
determine ε(θ) by

ε(θ) = ‖a(θ)‖2 · max ‖E(θ)‖2. (50)

We next present some specific scenarios, in which the
steering vector uncertainty boundary ε(θ) can be analytically
expressed according to (50). For the sake of simplicity, we only
consider linear arrays, although the extension to more compli-
cated configurations are straightforward.

A. Channel Gain-Phase Mismatch

To begin with, we consider the channel gain-phase
mismatch [28]–[30]. In this case, we have

C(θ) = Diag([1, g2e jϕ2, . . . , gN e jϕN ]) (51)

where gn and ϕn stand for the channel gain and phase error
of the nth element, respectively, n = 2, . . . , N . Note that
the measurements have been normalized by that of the first
element. Accordingly, E(θ) can be expressed as

E(θ) = Diag([0, g2e jϕ2 − 1, . . . , gN e jϕN − 1]). (52)

Recalling (48), one can readily obtain that

max ‖E(θ)‖2 = max
n=2,...,N

|gne jϕn − 1|. (53)

Suppose that gn and ϕn are randomly distributed in certain
regions as

gn ∈ [gn,l, gn,u], ϕn ∈ [ϕn,l , ϕn,u], n = 2, . . . , N (54)

where gl , gu , ϕl and ϕu stand for the corresponding bound-
aries. Then, we can obtain from (53) that

max ‖E(θ)‖2 = max
n∈{2,...,N},τ∈{l,u},ς∈{l,u}|gn,τ e jϕn,ς − 1| � δ1.

According to (50), one can set ε(θ) as

ε(θ) = ‖a(θ)‖2 · δ1. (55)

B. Element Position Mismatch

We next analyze the steering vector uncertainty �(θ) and
determine its corresponding ε(θ) in the presence of element
position uncertainties [31]. In this case, C(θ) is given by

C(θ) = Diag([1, e j2πα2sin(θ)/λ, . . . , e j2παN sin(θ)/λ]) (56)

where λ stands for wavelength, αn represents the position
deviation of the nth element from its ideal location dn , n =
2, . . . , N . According to (46), one can express E(θ) as

E(θ) = Diag([0, e j2πα2sin(θ)/λ − 1, . . . , e j2παN sin(θ)/λ − 1]).
Suppose that αn is randomly distributed in the range as

αn ∈ [αn,l , αn,u ], n = 2, . . . , N (57)

where αn,l and αn,u are known boundaries. Then, we can
obtain the following result about E(θ), that is,

max ‖E(θ)‖2 = max
n∈{2,...,N},τ∈{l,u}|e

j2παn,τ sin(θ)/λ − 1| � δ2(θ).

Different from the δ1 in Section III-A, the above δ2(θ) is
directionally dependent. Finally, according to (50), we can set
ε(θ) as

ε(θ) = ‖a(θ)‖2 · δ2(θ). (58)

C. Mutual Coupling Effect

Now we consider the steering vector uncertainty aris-
ing from mutual coupling effect [32]–[34]. Following [27],
we only consider the electromagnetic coupling between adja-
cent elements of a linear array, and express the mutual
coupling matrix C(θ) as

C(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ · z1,2 0 · · · 0

ξ · z2,1 1 ξ · z2,3
. . .

...

0 ξ · z3,2 1
. . . 0

...
. . .

. . . 1 ξ · zN−1,N

0 · · · 0 ξ · zN,N−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

which is complex symmetry. In C(θ), ξ is the known coupling
level between channels, zi, j are random variables with a fixed
magnitude |zi, j | = 1. It should be noted that only the value
of coupling level ξ is needed in our discussion, and the
measurements or exact values of zi, j s are not necessary for
us. This makes the study different from that in [9], where the
whole coupling matrix C(θ) has to be measured in advance.
On this basis, we recall (46) and obtain that

E(θ) = ξ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 z1,2 0 · · · 0

z2,1 0 z2,3
. . .

...

0 z3,2 0
. . . 0

...
. . .

. . . 0 zN−1,N

0 · · · 0 zN,N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (59)

According to the Gershgorin circle theorem [35], that is,

|λmax(D)| ≤ max
p=1,...,P

L∑
l=1

|D(p, l)| (60)

where D is a P × L matrix, it can be concluded that

max ‖E(θ)‖2 =
√

λmax(EH(θ)E(θ)) ≤ 2ξ � δ3. (61)

From (50), we can set ε(θ) as

ε(θ) = ‖a(θ)‖2 · δ3 = 2ξ‖a(θ)‖2. (62)

IV. ROBUST SIDELOBE SYNTHESIS

In this section, we introduce the application of robust
C2-WORD algorithm to sidelobe synthesis in the presence of
steering vector imperfections. The general strategy is similar to
the concept of pattern synthesis using WORD in [21]. How-
ever, different from the WORD approach, we realize robust
sidelobe synthesis by successively adjusting the worst-case
upper boundary magnitude pattern [i.e., Vu(θ)], but not the
ideal beampattern Va(θ). For the sake of clarity, in sequel,
we incorporate the subscript k into Va(θ) and Vu(θ), and use
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Fig. 2. Illustration of response control for a non-uniformly spaced linear array. (a) Before array response control. (b) After array response control.

Algorithm 3 Proposed Robust Sidelobe Synthesis Algorithm
1: give θ0, ε(θ), the desired magnitude upper pattern Vd (θ),

the initial weight vector w0 and its corresponding worst
case upper boundary pattern Vu,0(θ), set k = 1

2: while 1 do
3: select an angle θk by comparing Vu,k−1(θ) with

Vd(θ)
4: apply robust C2-WORD (see Algorithm 2) to realize

Vu,k(θk) = Vd (θk), obtain wk in (31) and the corre-
sponding upper boundary pattern Vu,k(θ)

5: if Vu,k(θ) is not satisfactory then
6: set k = k + 1
7: else
8: break
9: end if

10: end while
11: output wk

Va,k(θ) and Vu,k(θ) to stand for the counterparts of the weight
vector wk .

More precisely, an initial ideal pattern Va,0(θ) and the
corresponding worst-case upper boundary pattern Vu,0(θ) are
firstly obtained from (13) and (19), respectively, by setting
the initial weight vector as w0. Then, following the angle
selection strategy in [21], we choose an angle θ1, at which
Vu,0(θ) has a peak point and deviates most from the desired
upper pattern Vd(θ). Next, the robust C2-WORD scheme is
applied to modify the weight vector w0 to w1, by setting
the output of Vu,1(θ1) as Vd(θ1). Similarly, by comparing
Vu,1(θ) with Vd(θ), a second angle θ2, at which the response
is needed to be adjusted, is selected. An updated weight vector
w2 can thus be obtained via robust C2-WORD algorithm. The
above procedure is carried out successively once the sidelobe
responses of Vu,k(θ) are lower than Vd(θ). To make the above
descriptions clear, we summarize the proposed robust sidelobe
synthesis algorithm in Algorithm 3.

In practice, it is necessary to discretize the angular sector
and only calculate the values of Vu,k(θ) on finite grid points.
For different angular resolutions, there is a tradeoff between
the performance of the robust C2-WORD algorithm and its

TABLE I

ELEMENT POSITIONS OF THE NONUNIFORM LINEAR ARRAY

computational load. With a coarse discretization, it requires
less searching points and thus lower computational load to
finish the synthesis procedure. However, in the case when
a low angular resolution applies, the selected point in each
control step may not be a real sidelobe peak, and the resulting
beampattern may be unsatisfactory. As a matter of fact, even
using a dense angular discretization, the proposed robust
C2-WORD algorithm still runs faster than the conventional
convex programming method in [8], as presented in the next
section.

V. NUMERICAL RESULTS

We next present some simulations to show the effectiveness
of the proposed robust C2-WORD scheme on array response
control and pattern synthesis under various settings. To ver-
ify the superiority of our algorithm, the results of WORD
algorithm in [21] and CP method in [8] are also presented
if applicable. Unless otherwise specified, we take a(θ0) as
the initial weight, and set the discretization interval of the
angular observation sector [−π/2, π/2] as 0.1◦, in the imple-
mentations of both WORD and robust C2-WORD. In addition,
to result a weight vector with l2 norm one, we normalize the
ultimate weight vector in the following tests.

A. Illustration of Robust Sidelobe Control

In this section, we illustrate the performance of robust
C2-WORD on sidelobe control at a given point. In the first
example, we consider a nonuniformly spaced linear array with
12 elements, see Table I for its element positions. The beam
axis is steered to θ0 = −30◦ and the norm boundary of steering
vector uncertainty is taken as ε(θ) = 0.16. In this case, it is
required to adjust the (actual) sidelobe response at θ1 = 40◦
to be lower than Vd (θ1) = −25 dB. Fig. 2(a) depicts the ideal
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Fig. 3. Illustration of response control for a ULA. (a) Before array response control. (b) After array response control.

Fig. 4. Synthesis procedure of uniform-sidelobe pattern using a ULA. (a) Synthesized pattern at the first step. (b) Synthesized pattern at the second step.
(c) Synthesized pattern at the ninth step.

beampattern Va(θ) of the initial weight vector w0 = a(θ0),
the corresponding worst-case upper boundary pattern Vu(θ)
and the lower boundary pattern Vl(θ).

Applying our robust C2-WORD algorithm and after some
calculation, we can figure out that ρa,	 = −42.7746 dB,
β1,	 = 0.077. Fig. 2(b) presents the resulting beampatterns
of the weight vector w1. It is shown that the upper boundary
response level at θ1 [i.e., Vu(θ1)] has been precisely adjusted
to be Vd(θ1) = −25 dB. Since Vu(θ) is the worst-case upper
boundary of the sidelobe response, we know that all the actual
response level at θ1 is lower than Vu(θ1), if only ‖�(θ)‖2 ≤
ε(θ) is satisfied. In addition, comparing to the beampatterns
in Fig. 2(a), it should be noted that the resulting beampatterns
in Fig. 2(b) are almost unchanged at the uncontrolled points
(i.e., θ �= θ1).

To further show that our algorithm is effective for an arbi-
trarily specified initial weight, we consider a 12-element ULA
and steer its beam axis to θ0 = 20◦. In this case, we take the
initial weight of robust C2-WORD as the Chebyshev weight
with a −20 dB sidelobe attenuation. The norm boundary of
steering vector uncertainty is taken as ε(θ) = 0.1. It is required
to adjust the (actual) response level at θ1 = −23◦ to be lower
than Vd(θ1) = −25 dB. Fig. 3(a) shows the corresponding
Va(θ), Vu(θ) and Vl(θ) of the initial weight. After carrying
out the proposed robust C2-WORD scheme, we obtain that
ρa,	 = −31.9987 dB and β1,	 = 0.2506. The resulting

beampatterns are presented in Fig. 3(b), from which we find
that the value of Vu(θ1) equals exactly to Vd(θ1) = −25 dB.
Also, it can be checked from Fig. 3 that our algorithm results
in small pattern variations at the unadjusted points after the
robust sidelobe control process.

B. Robust Sidelobe Synthesis Using Robust C2-WORD

In this section, representative simulations are presented to
illustrate the application of robust C2-WORD to sidelobe
synthesis in the presence of steering vector uncertainties.

1) Uniform Sidelobe Synthesis for a ULA: In the first
example, a 16-element ULA is considered. We steer the beam
axis to θ0 = −30◦. The desired upper beampattern has −25 dB
uniform sidelobe level and the steering vector uncertainty
�(θ) is assumed to be norm-bounded by ε(θ) = 0.1.

Fig. 4 presents several intermediate results when synthesiz-
ing pattern with robust C2-WORD algorithm. In the first step,
our algorithm compares the worst-case upper boundary pattern
Vu,0(θ) of the initial weight with the desired pattern Vd(θ).
Then, we choose θ1 = −18.7◦ according to our angle selection
strategy. Applying robust C2-WORD, we figure out that ρa,	 =
−30.6544 dB and β1,	 = 0.1276 in the first step. The resulting
beampatterns are depicted in Fig. 4(a), from which we can
see that the upper boundary response level Vu,1(θ1) has been
precisely adjusted as its desired level (i.e., −25 dB). Based on
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Fig. 5. Maximum response deviation Dk versus the iteration number.

TABLE II

OBTAINED WEIGHTINGS OF ROBUST C2-WORD WHEN SYNTHESIZING

UNIFORM SIDELOBE PATTERN FOR A ULA

the resulting w1 and Vu,1(θ), we conduct the second step of
robust C2-WORD algorithm and figure out that θ2 = −43.1◦,
ρa,	 = −30.8132 dB and β1,	 = 0.1245. The obtained
beampatterns are illustrated in Fig. 4(b), from which we can
check that Vu,2(θ2) = −25 dB. Moreover, it can be observed
that our algorithm results in small pattern variations at the
uncontrolled region. After applying the robust C2-WORD
algorithm iteratively, the envelope of Vu(θ) becomes closer
to Vd(θ), and we can terminate the iteration if a satisfactory
Vu(θ) has been synthesized.

To explore the convergence of the proposed approach, we
define Dk to measure the maximum response deviation within
the set of sidelobe peak angles at the kth step (denoted by �k

s )

Dk � max
θ∈�k

s

(
Vu,k(θ) − Vd (θ)

)
. (63)

The curve of Dk versus the iterative number k is depicted in
Fig. 5. It clearly shows that Dk decreases with the increase
of iteration. After carrying out 50 response control steps,
the resulting Dk approximately equals to zero and we ter-
minate the synthesis process. Table II presents the resulting
weight vector of our algorithm. Interestingly, it is found that
the weights are centro-symmetric. A possible explanation is
that the array utilized has a symmetrical structure.

The ultimate beampatterns are depicted in Fig. 6. We can
see that the resulting worst-case upper boundary pattern Vu(θ)
of our algorithm aligns with the desired upper sidelobe level.
For the CP method in [8], we set the main lobe region as
[−42◦,−18◦] and obtain an upper boundary pattern Vu(θ)
with a uniform sidelobe level, as shown in Fig. 6. For CP

Fig. 6. Synthesized patterns with uniform sidelobe for a ULA.

TABLE III

OBTAINED WEIGHTINGS OF ROBUST C2-WORD WITH

CHANNEL PHASE-GAIN MISMATCH

approach, the resulting maximum sidelobe level of Vu(θ) is
about −24 dB, which is higher than that of the proposed robust
C2-WORD algorithm. In fact, there is a tradeoff between
the main lobe width and the sidelobe level for CP method.
Moreover, it is not clear how to determine the main lobe width
of CP approach for a given sidelobe level requirement. In
addition, the running time of the robust C2-WORD algorithm
is 0.03 s, which is much shorter than the 0.61 s of the CP
method.

To further investigate the performance of the robust
C2-WORD algorithm with different discretization precisions,
we measure the execution time T , and the resulting maximum
sidelobe peak deviation (denoted as D∗) of the ultimate
Vu(θ) away from the desired Vd(θ), by varying the angular
discretization interval from 0.05◦ to 2.1◦. Fig. 7 depicts the
resulting curves of T and D∗ versus the discretization interval.
Generally speaking, less execution time T [see Fig. 7(a)]
but worse performance [see D∗ in Fig. 7(b)] are resulted,
with the increase of the discretization interval. Moreover,
even using a dense discretization (for example, discretiz-
ing the angular sector with interval 0.05◦), the proposed
robust C2-WORD algorithm runs fast and can be completed
within 0.1 s.

2) Uniform Sidelobe Synthesis With Channel Gain-Phase
Mismatch: In this example, we consider a circular arc array
with 16 nonisotropic elements, see Fig. 8 in [36] with θc =
60◦. The beam axis is taken as θ0 = 0◦ and the sidelobe
level is expected to be lower than −20 dB. The distance
between adjacent elements is half a wavelength and there exist
channel gain-phase uncertainties on sensor elements. More
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Fig. 7. Resulting curves with different discretization intervals. (a) Curve
of the execution time T versus the discretization interval. (b) Curve of the
maximum deviation D∗ versus the discretization interval.

Fig. 8. Synthesized patterns for a circular arc array with gain-phase
mismatch.

specifically, the phase error ϕn and gain error gn are uniformly
distributed in [−0.035, 0.035] and [0.98, 1.02], respectively,
n = 2, . . . , N . Following the analysis in Section III-A, we can
figure out δ1 = 0.039 and then obtain the upper norm
boundary ε(θ) according to (55).

Fig. 8 presents the resulting worst-case upper boundary
pattern Vu(θ) of robust C2-WORD algorithm after 20 iteration

Fig. 9. Synthesized patterns for a linear array with element position
mismatch.

steps, and Table III lists the obtained weight vector. It can
be clearly observed that the sidelobe envelope of Vu(θ) is
aligned with the desired upper pattern Vd(θ). To compare the
performances of different approaches, Fig. 8 also demonstrates
the realizations of actual beampattern Vb(θ). We can see
that the actual beampatterns of robust C2-WORD and CP sat-
isfy the preassigned response requirement, while the WORD
algorithm does not. In this case, the execution time of the
robust C2-WORD algorithm is 0.06 s, and the counterpart of
the CP method is 3.69 s.

3) Uniform Sidelobe Synthesis With Element Position Mis-
match: We now carry out robust uniform sidelobe synthe-
sis by considering array element position mismatch. More
specifically, we use a 12-element nonuniformly spaced lin-
ear array, see Table I for its (ideal) element positions. The
beam axis is steered to θ0 = −20◦ and the upper level of
the desired sidelobe response is −20 dB. The array suffers
from element position perturbation and the location devi-
ation is uniformly distributed in [−0.5%λ, 0.5%λ]. Under
these settings, we can determine ε(θ) according to (58) and
realize robust sidelobe synthesis using our robust C2-WORD
algorithm.

Fig. 9 presents the resulting Vu(θ) of robust C2-WORD
algorithm after 50 iteration steps, and Table IV gives the
obtained weight vector. As expected, the obtained upper
boundary beampattern Vu(θ) satisfies the preassigned response
requirement. To show the superiority of our algorithm, we
also depict the realizations of actual beampattern Vb(θ) for
different methods. Fig. 9 shows that the actual beampatterns
of CP and WORD result unqualified responses on sidelobe
region. For the robust C2-WORD algorithm, the obtained
Vb(θ) meets our requirement with a sidelobe level about
−25 dB. In addition, the running time of the robust C2-WORD
algorithm is 0.08 s, which is shorter than the 3.36 s of the CP
method.

4) Nonuniform Sidelobe Synthesis With Mutual Coupling
Effect: In this example, we consider a 20-element ULA and
set the beam axis as θ0 = −30◦. Following the mutual cou-
pling model in Section III-C, we take mutual coupling effect
into consideration by setting the channel coupling level as
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TABLE IV

OBTAINED WEIGHTINGS OF ROBUST C2-WORD WITH ELEMENT POSI-
TION MISMATCH

Fig. 10. Synthesized patterns for a ULA with mutual coupling effect.

TABLE V

OBTAINED WEIGHTINGS OF ROBUST C2-WORD WITH
MUTUAL COUPLING EFFECT

ξ = −35 dB. With these configurations, one can readily
determine the upper boundary ε(θ) according to (62). Dif-
ferent from the previous testings, in this case, we consider a
nonuniform desired upper sidelobe in Vd(θ). More specifically,
the upper level is −27 dB in the region [40◦, 60◦] and −22 dB
in the rest of the sidelobe region.

Fig. 10 shows the resulting Vu(θ) of the proposed robust
C2-WORD algorithm after 80 iteration steps, and Table V
lists the corresponding weight vector. Though the desired
sidelobe level is nonuniform, we can see clearly that Vu(θ)
satisfies the preassigned requirement. Fig. 10 also depicts
the realizations of actual beampattern [i.e., Vb(θ)] for robust
C2-WORD, CP and WORD. It is observed that the robust
C2-WORD algorithm obtains a qualified beampattern Vb(θ)
with nonuniform sidelobe shape. The resulting sidelobe of
CP method is uniform and does not satisfy the preassigned
requirement in the null region. As for WORD, the maximal
sidelobe level of Vb(θ) is about −13 dB, which is also an
undesirable result. In addition, the running time of the CP

method is 3.41 s, which is longer than the 0.08 s of the
proposed robust C2-WORD algorithm.

VI. CONCLUSION

In this paper, we have presented a new scheme named
complex-coefficient weight vector orthogonal decomposition
(C2-WORD). The C2-WORD algorithm is modified from
the existing WORD method, and is able to precisely con-
trol the array response level of a given point starting from
an arbitrarily specified weight vector. Based on C2-WORD,
we have devised a robust C2-WORD algorithm, which can
realize robust sidelobe control and synthesis in the presence
of steering vector mismatch. Assuming that the steering vector
uncertainty is norm-bounded, the robust C2-WORD algorithm
precisely adjusts the worst-case upper boundary response of a
given sidelobe point as the desired level. The proposed robust
C2-WORD algorithm has an analytical expression of weight
vector updating and runs faster than the conventional convex
programming method. We have also presented detailed analy-
ses on how to determine the norm boundary of steering vector
uncertainty under various mismatch circumstances. Moreover,
a robust sidelobe synthesis approach has been devised by
successively applying robust C2-WORD algorithm. The appli-
cations of robust C2-WORD to robust sidelobe control and
synthesis have been validated with various examples. As a
future work, we shall consider the robust multi-point response
control algorithm so as to reduce the number of iterations steps
in pattern synthesis process.

APPENDIX A
DERIVATION OF (11)

Substituting (10b) into (10a) and recalling the constraint
Lk(θk, θ0) = ρk , we have

G(wk) ∝ J (βk) �
|βk|2

∣∣wH‖ a(θk)
∣∣2

‖w⊥‖2
2 + |βk|2‖w‖‖2

2

. (64)

On this basis, it is not hard to derive that

∂ J (βk)

∂|βk|2 =
∣∣wH‖ a(θk)

∣∣2‖w⊥‖2
2(‖w⊥‖2

2 + |β|2‖w‖‖2
2

)2 ≥ 0 (65)

which implies that J (βk) is monotonically nondecreasing with
the increase of |βk|. According to this observation, one can
readily obtain that

βk,
 = arg max
βk∈Cβk

|βk |. (66)

Recalling Fig. 1, we know that the βk with maxi-
mum modulo among Cβk is the intersection point of circle
Cβk with the line that passes O and cβk [see g−1(βk,l)
in Fig. 1]. Mathematically, it can be readily obtained
that

βk,
 = (|cβk | + Rβk )e
j � g(cβk ). (67)

This completes the derivation of (11).
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⎛
⎝ρa

∣∣wH⊥a(θ0)
∣∣ · ∣∣wH‖ a(θ0)

∣∣+ √
ρa
∣∣wH⊥a(θ0)

∣∣ · ∣∣wH‖ a(θk)
∣∣∣∣∣∣wH‖ a(θk)

∣∣2 − ρa
∣∣wH‖ a(θ0)

∣∣2∣∣
⎞
⎠

2

=

( √
ρaγ (θk)

Vd(θk) − √
ρa

)2

‖w⊥‖2
2

∣∣wH‖ a(θk)
∣∣2 −

( √
ρaγ (θk)

Vd (θk) − √
ρa

)2

‖w‖‖2
2

(77)

A = (∣∣wH‖ a(θk)
∣∣2 − γ 2(θk)‖w‖‖2

2

) · ∣∣wH⊥a(θ0)
∣∣2 · ∣∣wH‖ a(θ0)

∣∣2 − γ 2(θk)‖w⊥‖2
2 · ∣∣wH‖ a(θ0)

∣∣4 (79a)

B = 2
((∣∣wH‖ a(θk)

∣∣2 − γ 2(θk)‖w‖‖2
2

)− Vd(θk) · ∣∣wH‖ a(θ0)
∣∣∣∣wH‖ a(θk)

∣∣)∣∣wH⊥a(θ0)
∣∣2 · ∣∣wH‖ a(θ0)

∣∣ · ∣∣wH‖ a(θk)
∣∣ (79b)

C = V 2
d (θk)

∣∣wH‖ a(θk)
∣∣2 · ∣∣wH⊥a(θ0)

∣∣2 · ∣∣wH‖ a(θ0)
∣∣2 + (∣∣wH‖ a(θk)

∣∣2 − γ 2(θk)‖w‖‖2
2

) · ∣∣wH‖ a(θk)
∣∣2 · ∣∣wH⊥a(θ0)

∣∣2
−4Vd(θk)

∣∣wH‖ a(θk)
∣∣3 · ∣∣wH‖ a(θ0)

∣∣ · ∣∣wH⊥a(θ0)
∣∣2 + 2γ 2(θk)‖w⊥‖2

2 · ∣∣wH‖ a(θk)
∣∣2 · ∣∣wH‖ a(θ0)

∣∣2 (79c)

D = 2Vd(θk)
∣∣wH‖ a(θk)

∣∣3 · ∣∣wH⊥a(θ0)
∣∣2 · (Vd(θk)

∣∣wH‖ a(θ0)
∣∣− ∣∣wH‖ a(θk)

∣∣) (79d)

E = ∣∣wH‖ a(θk)
∣∣4 · (V 2

d (θk)
∣∣wH⊥a(θ0)

∣∣2 − γ 2(θk) · ‖w⊥‖2
2

)
(79e)

APPENDIX B
DERIVATION OF (33)

To simplify the notation, we omit the subscript of β in
sequel. According to the definition of ρa in (32), we have

√
ρa = ∣∣wH

k a(θk)
∣∣/∣∣wH

k a(θ0)
∣∣. (68)

Recalling the constraint (30b), we can expand it as

√
ρa = Vd(θk) − γ (θk)‖wk‖2∣∣wH

k a(θ0)
∣∣

= Vd(θk) −
√

ρaγ (θk)‖wk‖2∣∣wH
k a(θk)

∣∣ (69)

where (68) has been utilized. Substituting the constraint (30c)
into wk , we obtain∣∣wH

k a(θk)
∣∣2

‖wk‖2
2

= |β|2∣∣wH‖ a(θk)
∣∣2

‖w⊥‖2
2 + |β|2‖w‖‖2

2

. (70)

Then, we can reformulate (69) as

Vd(θk) − √
ρa =

√
ρaγ (θk)√√√√ |β|2∣∣wH‖ a(θk)

∣∣2
‖w⊥‖2

2 + |β|2‖w‖‖2
2

(71)

or equivalently

|β|2 =

( √
ρaγ (θk)

Vd(θk) − √
ρa

)2

‖w⊥‖2
2

∣∣wH‖ a(θk)
∣∣2 −

( √
ρaγ (θk)

Vd (θk) − √
ρa

)2

‖w‖‖2
2

. (72)

On the other hand, we can see from (7) that

|β| = |cβ | + Rβ (73)

with

|cβ | = ρa
∣∣wH⊥a(θ0)

∣∣ · ∣∣wH‖ a(θ0)
∣∣

|B(2, 2)| (74)

Rβ =
√

ρa
∣∣wH⊥a(θ0)

∣∣ · ∣∣wH‖ a(θk)
∣∣

|B(2, 2)| (75)

where B is given by

B =
[

wH⊥a(θk)

wH‖ a(θk)

][
wH⊥a(θk)

wH‖ a(θk)

]H

− ρa

[
wH⊥a(θ0)

wH‖ a(θ0)

][
wH⊥a(θ0)

wH‖ a(θ0)

]H

.

(76)

Thus, we have

|β| = ρa
∣∣wH⊥a(θ0)

∣∣ · ∣∣wH‖ a(θ0)
∣∣+ √

ρa
∣∣wH⊥a(θ0)

∣∣ · ∣∣wH‖ a(θk)
∣∣∣∣∣∣wH‖ a(θk)

∣∣2 − ρa
∣∣wH‖ a(θ0)

∣∣2∣∣ .

Substituting the above |β| into (72), we can eliminate β and
obtain a quartic equation with respect to ρa , as shown in (77)
on the top of this page. After some manipulations, we can
reshape (77) as

Aρ2
a + Bρa

√
ρa + Cρa + D

√
ρa + E = 0 (78)

where the coefficients A, B , C , D and E are given in (79)
on the top of this page. Equation (78) can be alternatively
expressed as

Aρ2
a + Cρa + E = −√

ρa(Bρa + D). (80)

Taking square to both sides of (80) yields

A2ρ4
a + (2AC − B2)ρ3

a + (2AE − 2B D + C2)ρ2
a

+ (2C E − D2)ρa + E2 = 0. (81)

This completes the derivation of (33).

APPENDIX C
DERIVATIONS OF THE FEASIBILITY OF (33)

To study the feasibility of (33), it is reasonable to assume
that Vd(θk) > 0. On this basis, we can substitute ρa in (32)
and the constraint in (30c) into (30b), and obtain

√
ρa = Vd(θk) − γ (θk)‖wk‖2∣∣wH

k a(θ0)
∣∣ . (82)

Define

f (ρa) � Vd(θk) − √
ρa − γ (θk)‖wk‖2∣∣wH

k a(θ0)
∣∣ . (83)
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Note that β	 = 0 and wk = w⊥ when ρa = 0 applies. Then,
we combine (44) and obtain that

f (0) = Vd (θk) − γ (θk)‖wk‖2∣∣wH
k a(θ0)

∣∣
= Vd (θk) − [Vd(θk)ε(θ0) + ε(θk)] · ‖w⊥‖2∣∣wH⊥a(θ0)

∣∣
= Vd (θk) ·

(∣∣wH⊥a(θ0)
∣∣− ε(θ0)‖w⊥‖2

)∣∣wH⊥a(θ0)
∣∣ − ε(θk)‖w⊥‖2∣∣wH⊥a(θ0)

∣∣
≥ 0. (84)

On the other hand, we can readily check that

f (V 2
d (θk)) = −γ (θk)‖wk‖2∣∣wH

k a(θ0)
∣∣ < 0. (85)

Since f (ρa) in (83) is a continuous function, the results (84)
and (85) indicate that there exists a ρ̆a ∈ [0, V 2

d (θk)) such that

f (ρ̆a) = 0. (86)

Recalling the derivations in appendix B, the quartic polyno-
mial in (33) is derived from f (ρa) = 0. As a result, we learn
from (86) that there exists the same ρ̆a ∈ [0, V 2

d (θk)) solving
the quartic polynomial (33). This completes the derivations.
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