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Communication
Synthesis of Sparse Linear Arrays via Low-Rank Hankel Matrix Completion

Xuejing Zhang and Tianyuan Gu

Abstract— In this communication, we propose a method to synthesize
sparse linear arrays using low-rank Hankle matrix completion. With
the given metrics (e.g., peak sidelobe level (PSL), mainlobe width) of
the desired beampattern, we synthesize a sparse linear array directly
by designing a low-rank Hankel matrix under appropriate constraints.
A low-rank matrix completion problem is formulated with Hankle
structure constraint, and an effective solver is presented using log-det
heuristic. Different from existing work that requires reference array
and reference beampattern, our method synthesizes sparse linear arrays
directly according to the desired beampattern metrics. In this way,
our method is more flexible and avoids the selection of reference
array/beampattern. Moreover, due to maintaining the Hankel structure,
the proposed method can achieve more accurate estimation on element
positions. In addition, the proposed method can be easily extended
and applied to various sparse array synthesis scenarios. Representative
simulations are conducted to validate the effectiveness and superiority of
the proposed method. It is shown that the proposed method synthesizes
desired beampatterns with fewer antenna elements, compared with
existing work.

Index Terms— Focused/shaped beampattern, log-det heuristic, low-
rank Hankel matrix completion, sparse array synthesis.

I. INTRODUCTION

Sparse array refers to a type of antenna array where the elements
are not evenly spaced or distributed [1]. In contrast to a uniform
linear array (ULA) or a planar array with regular spacing between
elements, a sparse array deliberately varies the spacing between its
elements. This nonuniform spacing offers a cost-effective solution
for systems requiring large apertures with fewer elements, reducing
the overall complexity and cost. By optimizing the element positions
within the sparse array, we can achieve comparable or even better
performance than uniform arrays with fewer elements. This advantage
makes sparse arrays an appealing choice for various applications,
including radar systems and wireless communications.

Over the past few decades, numerous techniques have been
developed for sparse array synthesis. As a conventional approach
for sparse array synthesis, global optimization-based methodologies
are used to find ideal sparse array configurations. These methods
leverage stochastic approaches to locate optimal element spacings,
encompassing techniques such as genetic algorithm [2], particle
swarm optimization [3], and simulated annealing [4]. Notably, while
these methods often yield effective results, they typically require
significant computational time, which can be a limiting factor in
practical applications.
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In recent years, convex optimization techniques have become
increasingly favored in the field of sparse array synthesis. These meth-
ods aim to optimize both antenna positions and their corresponding
weights, with the goal of achieving a desired beampattern using the
minimum number of elements within a given aperture. For instance,
an iterative reweighted ℓ1-norm minimization technique is proposed
in [5] for synthesizing sparse arrays. Although it circumvents the
intractability of the original ℓ0-norm problem, it cannot guarantee
obtaining the minimum number of antennas. As an improvement
of the above algorithm, an efficient compressed-sensing inspired
deterministic algorithm is presented in [6], incorporating a modified
weighting function and a novel clustering technique. This approach
avoids the situation where some antennas are too closely located,
thereby improving performance in sparse array synthesis. In addition,
a reconfigurable sparse array synthesis method is proposed in [7],
using focal underdetermined system solver and multiple measurement
vectors collaborative sparse recovery. Apart from the aforementioned
work, there also exist other convex-optimization-based methods
attempting to synthesize sparse arrays, as reported in [8], [9], and
[10]. The convex-optimization-based sparse array synthesis methods
mentioned above generally rely on selecting antennas from prede-
fined grid points, which restricts the design freedom and flexibility.
Although some off-grid methods have been attempted for sparse array
synthesis recently [11], [12], they often require approximations and
the solutions are complex.

In addition to the aforementioned methods, Oliveri and Massa
[13] propose the use of sparse Bayesian learning (SBL) for sparse
array synthesis. Given a reference beampattern, the algorithm models
the deviation between the synthesized beampattern and the reference
one. Ultimately, the sparse array synthesis problem is transformed
into an SBL problem, which is then solved using relevance vec-
tor machines [14]. Separately, the matrix pencil method (MPM)
is applied to sparse array synthesis in [15]. In the MPM-based
method, the reference beampattern is sampled to construct a Hankel
matrix. Based on the fact that the rank of Hankel matrix equals
to the number of array elements, this method performs a low-rank
approximation of the Hankel matrix to reduce element number
and uses the inherent structure of matrix to determine the element
position. Applications of MPM in various sparse array synthesis
scenarios can be found in [16] and [17]. Using the continuous
compressed sensing framework, Wang et al. [18] formulate sparse
array synthesis as a sparse recovery problem. The problem is then
tackled through semidefinite programming incorporating atomic norm
minimization (ANM). The aforementioned sparse array synthesis
methods based on SBL, MPM, and ANM require user-specified ref-
erence array and reference beampattern. However, different reference
arrays/beampatterns can affect the performance of array synthesis,
and currently there is a lack of theoretical basis for setting the
optimal reference array/beampattern. In practical applications, it is
desirable to conduct sparse array synthesis directly based on specific
beampattern metrics, such as peak sidelobe level (PSL) and mainlobe
width.

In this communication, we propose a sparse array synthesis method
based on low-rank Hankel matrix completion [19]. Unlike the existing

0018-926X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on December 30,2024 at 02:06:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0048-4442
https://orcid.org/0000-0002-2255-5715


IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 12, DECEMBER 2024 9523

work in [13], [14], [15], [16], [17], and [18], the proposed method
does not require a user-specified reference array/beampattern. Based
on the given metrics (e.g., PSL, mainlobe width) of the desired
beampattern, we establish a sparse array synthesis model using
low-rank Hankel matrix completion, which can be solved through
log-det heuristic. The proposed model allows for the optimal design
of desired values on beampattern, avoiding the issues of reference
array/beampattern selection and potential performance degradation.
In addition, our method can be easily extended to different scenarios
of sparse array synthesis. Various examples (including numerical
simulation and full-wave simulation) are presented to demonstrate the
effectiveness and superiority of the proposed method. It is shown that
the proposed method achieves more accurate estimation for element
positions and synthesizes desired beampatterns with fewer antenna
elements.

II. PRELIMINARIES

Assuming narrowband and far-field conditions, we consider a
reference linear array with M elements. The reference beampattern
can be expressed as

P (u) =

M∑
m=1

wm Em (u) e− j(2π/λ)pm u (1)

where u ≜ sin(θ) is the normalized spatial angle, and λ represents the
wavelength. In (1), Em(u), pm , and wm denote the element pattern,
position coordinate, and complex excitation coefficient of the mth
antenna, respectively, m = 1, . . . , M . We assume that the element
patterns of all the antennas are identical, or they share a common
average pattern E(u). According to the pattern multiplication princi-
ple [20], we can then express the reference beampattern P(u) as

P (u) = E (u) F (u) . (2)

In (2), F(u) is the reference array factor, which can be calculated as

F (u) = wT
r ar (u) (3)

where (·)T represents the transpose operation, ar (u) =

[e− j (2π/λ)p1u , . . . , e− j (2π/λ)pM u
]
T stands for the steering vector

of the reference array, and wr = [w1, . . . , wM ]
T is the complex

excitation vector, which can be preset according to the desired
beampattern characteristics. According to (2), we can perform array
design by focusing solely on the array factor F(u), which typically
takes complex values.

To achieve sparse array synthesis, the MPM-based method [15]
approximates the array factor F(u) using as few antennas as possible.
To this end, the array factor F(u) is sampled uniformly to obtain the
data vk

vk = F (u) |u=k1, k = −K , − K + 1, . . . , K (4)

where 1 represents the sampling interval, and the sample number is
2K + 1. Constructing the following (2K − L + 2)× L Hankel matrix
with coefficients v−K , . . . , vK :

Y
(
v−K , . . . , vK

)
≜


v−K v−K+1 · · · v−K+L−1

v−K+1 v−K+2 · · · v−K+L
...

...
. . .

...

vK−L+1 vK−L+2 · · · vK


where L is the matrix pencil parameter, and it can be further derived
that

rank (Y) = M. (5)

Based on (5), the MPM-based method performs a low-rank approx-
imation of the matrix Y to reduce the number of antenna elements.

It should be noted that the aforementioned approach relies
on a user-specified reference array/beampattern. However, there is

Fig. 1. Schematic of the proposed method.

currently no theoretical basis for determining the optimal reference
array/beampattern according to the given beampattern metrics. Next,
we propose a sparse array synthesis method using low-rank Hankel
matrix completion, which eliminates the need for setting reference
array and reference beampattern.

III. SPARSE ARRAY SYNTHESIS USING LOW-RANK HANKEL

MATRIX COMPLETION

In this section, we first formulate the low-rank Hankel matrix
completion model for sparse array synthesis. On this basis, a log-
det heuristic algorithm is presented to solve the low-rank Hankel
matrix completion problem. Finally, we discuss the extensions of
the proposed method in various sparse array synthesis scenarios. For
simplicity, we assume that the antennas are isotropic.

A. Formulation of Low-Rank Hankel Matrix Completion

We take the sparse array synthesis of focused beam as an example.
For the sake of clarity and ease of explanation, Fig. 1 presents a
schematic of the proposed method. Let u0 be the mainlobe axis, the
normalized upper sidelobe level at spatial angle u is ρ(u). According
to the beampattern metrics, we can obtain the mainlobe region Ψm
and the sidelobe region Ψs . Unlike the existing methods that construct
the Hankel matrix by sampling the reference beampattern, we directly
design a low-rank Hankel matrix while satisfying the beampattern
constraints.

More specifically, we take u0 = 0 as an example and assume that
the Hankel matrix Z consists of coefficients x−K , . . . , xK , where xk ’s
represent the beampattern data that we need to determine. The angle
interval corresponding to xk and xk+1 is 1, as mentioned in (4) and
depicted in Fig. 1. Based on the given Ψm , Ψs , and 1, we can define
the following sets of indices describing the mainlobe and sidelobe
with respect to the points xk :

M ≜ {−S + 1, . . . , S − 1} (6)

S ≜ {−K , . . . ,−S, S, . . . , K } (7)

where S corresponds to the index of sidelobe boundary. Then, xm
corresponds to a point in the mainlobe of the beampattern if m ∈ M,
and xs belongs to a point in the sidelobe of the beampattern if s ∈ S.

To achieve a focused beam, we constrain the point x0 on the
mainlobe axis to be a positive constant η and constrain the point
xs in the sidelobe region to have a lower modulus than the desired
level η · ρ(s1), where s ∈ S. Based on these constraints, we can
minimize the number of array elements by minimizing the rank of
the aforementioned Hankel matrix Z. Thus, we obtain the following
low-rank Hankel matrix completion formulation for sparse array
synthesis:

min
Z

rank
[
Z

(
x−K , . . . , xK

)]
(8a)

s.t. x0 = η (8b)

|xs | ≤ η · ρ (s1) , s ∈ S (8c)

Z
(
x−K , . . . , xK

)
∈ H(2K−L+2)×L (8d)

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on December 30,2024 at 02:06:09 UTC from IEEE Xplore.  Restrictions apply. 



9524 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 12, DECEMBER 2024

where H denotes the set of Hankel matrices with dimensions spec-
ified by the superscript. It should be noted that the variables xk ’s
in (8) can be complex-valued. Based on the given metrics on the
desired beampattern, the formulation (8) recovers the uncertain and
incomplete Hankel matrix Z while satisfying specified beampattern
constraints.

B. Solving Problem (8) Using Log-Det Heuristic

Note that the matrix Z is complex-valued and not necessarily
square, which indicates that problem (8) typically does not have an
analytical solution. In fact, according to the semidefinite embedding
lemma in [21], we can convert problem (8) into a task of minimizing
the rank of a block-diagonal semidefinite matrix. More specifically,
by introducing Hermitian matrices P and T , the problem (8) can be
equivalently expressed as

min
Z,P,T

1
2

rank
[
diag (P, T )

]
(9a)

s.t.
[

P Z
ZH T

]
⪰ 0 (9b)

x0 = η (9c)

|xs | ≤ η · ρ (s1) , s ∈ S (9d)

Z
(
x−K , . . . , xK

)
∈ H(2K−L+2)×L (9e)

where diag(P, T ) is a block diagonal matrix given by

diag (P, T ) ≜

[
P 0
0 T .

]
(10)

In this communication, we use the log-det heuristic [21] to solve
the above problem (9). Since diag(P, T ) is semidefinite, the function
log det[diag(P, T ) + δ I] can be seen as a smooth surrogate for
rank [diag(P, T )], where δ > 0 is a small regularization constant.
Instead of solving (9), we consider the following problem:

min
Z,P,T

log det
[
diag (P, T ) + δ I

]
(11a)

s.t.
[

P Z
ZH T

]
⪰ 0 (11b)

x0 = η (11c)

|xs | ≤ η · ρ (s1) , s ∈ S (11d)

Z
(
x−K , . . . , xK

)
∈ H(2K−L+2)×L . (11e)

Note that in the above problem, all the constraints are convex,
whereas the objective function (11a) is nonconvex.

Based on the analysis presented in [21], we use iterative lineariza-
tion to find a local minimum for the above problem (11). This leads
to the following iterations for solving (11) locally:

min
Z,P,T

Tr
[
V i diag (P, T )

]
(12a)

s.t.
[

P Z
ZH T

]
⪰ 0 (12b)

x0 = η (12c)

|xs | ≤ η · ρ (s1) , s ∈ S (12d)

Z
(
x−K , . . . , xK

)
∈ H(2K−L+2)×L (12e)

where V i ≜ [diag(P i−1, T i−1) + δ I]
−1 represents the weight

matrix in the i th iteration, and the matrices P i−1 and T i−1 are solved
from the (i − 1)th iteration. In the first iteration, we can initially
choose V 1 = I . The iteration process terminates when rank(Z)

remains unchanged over multiple consecutive iterations. Note that
the problem (12) is a convex program, which can be solved using
off-the-shelf solver, such as cvx [22]. Moreover, as discussed in [21],
the trace function [refer to (12a)] acts as the convex envelope of the
rank function for matrices with norm less than one. This provides a

theoretical support for using the trace heuristic in our approach. Due
to the local solving nature, we cannot guarantee that the sequential
solutions to (12) converge to the global optimum of the low-rank
Hankel matrix completion problem (8). Nevertheless, our simulation
results indicate that the algorithm converges after a limited number
of iterations and produces satisfactory low-rank solutions.

Remark: In the above formulations, no constraints are imposed
on points within the mainlobe region apart from x0. However,
simulations have discovered that the application of log-det heuristic
in this scenario may yield a trivial solution, where x0 equals η

and all other values are zero. To obtain a nontrivial solution, it is
necessary to select a few additional points xl ’s (usually two or three
are sufficient) within the mainlobe region and impose the following
convex constraint:

|xl − η| ≤ |η| − α (13)

where α is a positive constant satisfying α ≪ |η|. It is not difficult
to find that the constraint (13) can avoid the occurrence of xl = 0.

C. Determination of Antenna Position and Excitation

After obtaining the low-rank Hankel matrix Z, the antenna loca-
tions and excitation vectors can be determined based on MPM [15].
Specifically, assuming rank(Z) = R, the positions of the r th antenna
in the sparse array can be obtained by

p̂r =
λ · ln (βr )

j2π1
, r = 1, . . . , R (14)

where j ≜
√

−1, βr represents the r th eigenvalue of matrix Z†
1 Z2,

and Z1 and Z2 represent the matrices obtained by deleting the first
column and last column from Z, respectively. Unlike the MPM-based
method, the proposed method does not require an additional low-rank
approximation step. It ensures that the matrix Z, which retains its
Hankel structure, can be directly used for estimating the array element
positions, thereby achieving more accurate estimation results.

Based on the relationship between the beampattern data xk and the
excitation vector w, it is not difficult to obtain the following equation:

β−K
1 β−K

2 · · · β−K
R

β−K+1
1 β−K+1

2 · · · β−K+1
R

...
...

. . .
...

βK
1 βK

2 · · · βK
R


︸ ︷︷ ︸

A


ω1
ω2
...

ωR


︸ ︷︷ ︸

w

=


x−K

x−K+1
...

xK


︸ ︷︷ ︸

x

.

In the least-squares sense, the following estimate for the excitation
vector can be obtained:

ŵ =

(
AH A

)−1
AH x. (15)

Finally, the array factor for the synthesized sparse array can be
expressed as

f (u) = ŵTa (u) (16)

where a(u) represents the steering vector of the resulting sparse array.

D. Extensions of the Proposed Method

The proposed sparse array synthesis scheme can be easily extended
to more complex scenarios. Next, we consider two extensions of the
proposed method. The first extension is sparse linear array synthesis
with a shaped beampattern as desired. The second one is to synthesize
a sparse linear array with multiple beampatterns.

1) Sparse Linear Array Synthesis With a Shaped Beampattern:
For shaped beampattern, it is typically necessary to design the beam
according to a specific shape, primarily in the mainlobe region. In this
case, we can incorporate the beam constraints into low-rank Hankel
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Fig. 2. Illustration of the patch antenna element.

matrix completion. More specifically, we can impose the following
constraint:

|xm − γ (m1) | ≤ ξ, m ∈ M̄ (17)

where γ (m1) is preassigned and gives the desired shaped beam-
pattern level at spatial angle m1, ξ is a given threshold, and M̄
represents the set of spatial angles used for shaped beampattern
constraints. Note that the above constraint (17) is convex.

2) Sparse Linear Array Synthesis With Multiple Beampatterns:
In the second scenario, we expect to synthesize a reconfigurable
sparse array that can radiate multiple distinct radiation beampatterns
by varying the element excitations. Following the model for multi-
beampattern sparse array synthesis presented in [17], we can directly
design the following low-rank block Hankel matrix:

4 =


Z

(
x(1)
−K , . . . , x(1)

K

)
Z

(
x(2)
−K , . . . , x(2)

K

)
...

Z
(

x(Q)
−K , . . . , x(Q)

K

)

 (18)

where Q represents the number of synthesized beampatterns, x(q)
k

denotes the beampattern data at spatial angle k1, and for the
qth beampattern, k = −K , . . . , K , q = 1, . . . , Q. By imposing
constraints on x(q)

k according to the desired beampattern metrics,
we can formulate a low-rank matrix completion model to minimize
the rank of block Hankel matrix 4. This allows us to recover the
multiple beampattern data automatically while ensuring the minimum
antenna number.

IV. SIMULATION

In this section, we conduct representative simulations to demon-
strate the efficacy and advantage of the proposed method.1 To
evaluate performance of our method, we benchmark it against the
MPM method in [15] and the ANM method in [18]. To see the
impact of mutual coupling on the proposed method, we conduct full-
wave simulations with patch antennas using CST full-wave simulation
software, operating at a center frequency of 2.5 GHz. The dielectric
permittivity of the substrate is ϵr = 2.2. Other topological details
of the patch antenna element can be found in Fig. 2, where wx =

wy = 100, lx = 38, ly = 38.6, rx = 1.46, ry = 30.7, vx = 13.46,
vz = 8.035, and hz = 2, all units are in millimeters.

A. Sparse Array Synthesis With a Focused Beampattern

In the first example, we consider sparse array synthesis for a
focused beampattern with equal sidelobe level. The beam is pointed
toward the normal direction of the array. For MPM and ANM meth-
ods, we use the Chebyshev beampattern of a ULA with 20 elements

1The MATLAB codes for the proposed method are available online at
https://zhangxuejing7.github.io/HomePage/

Fig. 3. Result of the proposed method with a focused beam. (a) Beampattern
result. (b) Curve of rank(Z) versus iteration step.

TABLE I
RESULTS OF ELEMENT POSITIONS AND EXCITATIONS FOR FOCUSED BEAM

SPARSE ARRAY SYNTHESIS

as reference. For the proposed method, we set K = 40, L = 41,
η = 13, α = 1, and δ = 0.1.

1) Performance Demonstration and Comparison: We assume that
the desired PSL is −40 dB, and the mainlobe width is equal
to that of a Chebyshev beampattern. The result of the proposed
method is presented in Fig. 3. Fig. 3(a) illustrates the recovered
beampattern data xk using the proposed method, as well as the
ultimate beampattern and full-wave simulation result. As can be seen
from Fig. 3(a), the data recovered using low-rank Hankel matrix
completion meet the given radiation requirements. Meanwhile, the
radiation beampattern and full-wave simulation result are satisfactory.
Fig. 3(b) depicts the curve of rank(Z) versus iteration step. It can be
observed that rank(Z) gradually decreases and tends to converge after
eight iterations, ultimately resulting in rank(Z) = 12. Accordingly,
the number of sparse array elements obtained by the proposed method
is 12. Table I provides detailed results of ultimate element positions
and excitations, where the array has been normalized to the origin.

Fig. 4 shows comparison of the performance of different methods.
The beampatterns obtained by different methods are depicted in
Fig. 4(a). It should be noted that for a fair comparison, the element
number is set to 12 for MPM and ANM methods. With the same
number of elements, the proposed method achieves lower PSL.
Considering that all three methods estimate element positions based
on the matrix pencil principle, Fig. 4(b) presents the distribution of
eigenvalues (see (11) in [15] and (16) in [18]) in the complex plane
during the estimation of element positions. As evident from Fig. 4(b),
the eigenvalues of the proposed method are closer to the unit circle
in the complex plane, indicating a more accurate element position
estimation result. Finally, the sparse array distributions of different
methods are compared in Fig. 4(c).

2) Performance of the Proposed Method Under Different PSLs and
Mainlobe Widths: To demonstrate the flexibility and effectiveness of
the proposed method, its performance is evaluated under different
beampattern metrics. In the first case, the PSL is set to −28, −36, and
−44 dB, respectively. Fig. 5(a) illustrates the beampatterns obtained
by the proposed method for the above three PSLs. It is evident that
the proposed algorithm can achieve satisfactory beampattern results
based on the desired PSL metrics. To assess the impact of PSL
on the resulting number of elements in the sparse array, Fig. 5(b)
depicts the curve of obtained element number versus PSL. It is clear
that as PSL increases, the number of required elements decreases.
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Fig. 4. Performance comparison of different methods for focused-beam
sparse array synthesis. (a) Beampattern comparison. (b) Comparison of
eigenvalue distribution in the complex plane. (c) Comparison of sparse array
distributions.

Fig. 5. Performance illustration of the proposed method with different PSLs.
(a) Beampattern results. (b) Curve of obtained element number versus PSL.
(c) Obtained sparse array distributions.

Fig. 6. Simulation results with different mainlobe width configurations.
(a) Beampattern results of the proposed algorithm. (b) Obtained sparse array
distributions of the proposed algorithm. (c) Design time comparison of
different algorithms. (d) Memory usage comparison of different algorithms.

Fig. 5(c) shows the sparse array distributions under different
PSLs.

In the second scenario, we set the desired PSL as −40 dB and
evaluate the performance of the proposed method under different
mainlobe width configurations. The simulation results with different
mainlobe width configurations are presented in Fig. 6, where the
parameter µ is defined as half of the width between the first nulls of
mainlobe. Fig. 6(a) shows the beampatterns obtained by the proposed
method for various mainlobe widths, and Fig. 6(b) presents the
corresponding sparse array distributions. From Fig. 6(a), it is evident
that the proposed method can achieve satisfactory beampattern results
under different mainlobe widths. In addition, Fig. 6(b) reveals that
a wider mainlobe width requires fewer array elements. To further
assess the complexity of the proposed method, Fig. 6(c) and (d)
shows comparison of the design times and required memory (here
approximated by the number of variables) of different algorithms
under varying mainlobe widths, with the sequential convex optimiza-
tion (SCO) method in [5] also considered. The simulation results
reveal that as the mainlobe width is set narrower, the design time
of each algorithm increases, and more memory/variables are needed.
Due to the iterative solution process, the design time of the proposed

Fig. 7. Performance comparison of different methods for shaped beam sparse
array synthesis. (a) Beampattern result of the proposed method. (b) Beam-
pattern comparison of different algorithms. (c) Comparison of eigenvalue
distribution in the complex plane. (d) Comparison of sparse array distributions.

TABLE II
RESULTS OF ELEMENT POSITIONS AND EXCITATIONS FOR SHAPED BEAM

SPARSE ARRAY SYNTHESIS

method is longer than that of the other three methods. In terms of
memory usage, the proposed method only exceeds the MPM method
but is lower than the ANM and SCO methods.

B. Sparse Array Synthesis With a Shaped Beampattern

To assess the performance of the proposed algorithm in sparse
array synthesis for shaped beampatterns, we consider a flat-top-
shaped beampattern scenario. We set the PSL to −30 dB and specify
a flat-top mainlobe width of 11.5◦. We use the method in [23]
to generate the reference beampattern for MPM and ANM. The
reference linear array has 30 elements with a spacing of 0.5 λ.

Fig. 7 presents the sparse array synthesis results. Fig. 7(a) illus-
trates the beampattern data recovered using our method and the
full-wave simulation result, demonstrating that the resulting beam-
pattern meets the expected requirements. In this case, our method
obtains 12 array elements after ten iteration steps. With the array
element number fixed at 12 for MPM and ANM, Fig. 7(b) shows
comparison of the beampattern results of different methods. We can
see that the proposed method achieves a flatter mainlobe beam and
lower PSL when compared with MPM and ANM. Fig. 7(c) shows
comparison of the eigenvalue distributions of the three methods.
It can be seen that the eigenvalues of our method are closer to the
unit circle, indicating a more precise element position estimation.
The sparse array distributions resulting from the three methods are
presented in Fig. 7(d). Table II provides detailed information on
the ultimate element positions and excitations obtained through the
proposed method.

C. Sparse Array Synthesis With Multiple Beampatterns

To demonstrate the broad applicability of the proposed scheme,
we assess the performance of sparse array synthesis for multiple
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Fig. 8. Performance illustration of the proposed method with multiple-beam
sparse array synthesis. (a) Beampattern result. (b) Curve of rank(4) versus
iteration step.

TABLE III
RESULTS OF ELEMENT POSITIONS AND EXCITATIONS FOR

MULTIPLE-BEAM SPARSE ARRAY SYNTHESIS

beampatterns. For simplicity, we consider two focused beampatterns,
with beam directions pointing to 10◦ (sin(10◦) ≈ 0.174) and −15◦

(sin(−15◦) ≈ −0.259), respectively. The PSL is −20 dB. In this
case, we design a low-rank block Hankel matrix 4 in (18) under
beampattern constraints.

Fig. 8(a) illustrates the two beampatterns obtained using the
proposed method. It is evident that both the beampatterns meet
the desired radiation performance. Fig. 8(b) depicts the change in
rank(4) with iterations. We can see that the proposed method tends to
converge after ten iterations, resulting in a matrix 4 with a rank of 10.
Table III presents the final element positions and the corresponding
excitations for the two beams. The results clearly demonstrate the
versatility and effectiveness of our proposed scheme in synthesizing
sparse arrays for multiple beampatterns.

V. CONCLUSION

In this communication, we have presented a method for synthe-
sizing sparse linear arrays using low-rank Hankel matrix completion.
Our method generates the sparse linear array based on the desired
beampattern metrics (such as PSL and mainlobe width), without using
reference array/beampattern. We formulate the sparse array synthesis
problem as a low-rank matrix completion task and solve it using
log-det heuristic. By preserving the Hankel structure, our method
has demonstrated superior accuracy in estimating element positions.
Compared with existing works, our method offers superior flexibility
and can generate the desired beampatterns using fewer antenna
elements, although it has the drawback of long computational time.
In addition, the proposed method is suitable for diverse sparse array
synthesis scenarios across different applications, including short-
range communication [24] and radar sensing. In such applications,
our method could potentially contribute to enhancing performance
metrics such as directivity and signal-to-noise ratio.
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