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Abstract—This paper presents a novel accurate array response
control algorithm, abbreviated as A2 RC, and its application to ar-
ray pattern synthesis. The proposed A2 RC algorithm deals with the
problem of how to accurately control the array response at a given
direction. Starting from the adaptive array theory, a deep analysis
of the optimal weight vector is carried out. It is found that the nor-
malized response at a given direction can be accurately adjusted
to an arbitrary level, by means of making some simple modifica-
tion to the initial weight vector. On this basis, all possible weight
vectors, which have a specific form and can make the normalized
response at the given direction equal to the prescribed value, are
first figured out. Then, an effective approach to selecting the most
appropriate one, which would cause the least pattern distortion, is
devised. By applying the A2 RC algorithm, a new pattern synthesis
approach for arbitrary arrays is developed. In this approach, the
array pattern is adjusted in a point-by-point manner by succes-
sively modifying the weight vector. Contrary to the conventional
approaches that assign artificial interferences in an ad hoc way,
our approach is able to obtain the weight vector without iteratively
determining the powers of the artificial interferences. Extensive
simulation results are provided to demonstrate the performance of
the A2 RC algorithm in array response control and the effectiveness
of this algorithm in pattern synthesis under various situations.

Index Terms—Array response control, array pattern synthesis,
adaptive array theory, array signal processing.

I. INTRODUCTION

PATTERN synthesis is one of the fundamental problems
in array signal processing. It has been extensively inves-

tigated over the last several decades owing to its vast applica-
tions such as radar, remote sensing and wireless communications
[1]–[4]. In brief, pattern synthesis is to design a specific pattern
by determining appropriate weights of the array elements. For
example, in radar systems, it is desired to design a pattern with
low sidelobe levels to suppress the noise and interference. In
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communication systems, controlling the array beam pattern to
form nulls at the directions of jammings has become a common
anti-interference measure. Additionally, in remote sensing ap-
plications, producing a pattern with a broad mainlobe is required
to achieve a wide coverage area.

Quite a number of pattern synthesis approaches have been
proposed in the literature. In [5], Dolph provided an elegant so-
lution to the problem of obtaining a Chebyshev pattern, which
yields a minimum uniform sidelobe level for a given mainlobe
width. It should be noticed that this method is limited to uni-
form linear arrays (ULAs) in general. As a result, many efforts
have been devoted to pattern synthesis when the array elements
are not equally spaced and/or the elements have nonisotropic
patterns [6]–[8]. Among them, a noteworthy stream is the uti-
lization of global search. One of the most popular strategies
is the so-called genetic algorithm, which performs the genetic
operations in order to obtain the optimum solution [6]. Other
common global search algorithms applied to pattern synthesis
include particle swarm optimization [7] and simulated annealing
[8]. It is known that a main shortcoming of these approaches is
the prohibitive amount of computation time, which significantly
limits the practical use.

For arbitrary arrays, many algorithms to achieve desired pat-
terns have been proposed by taking advantage of the adap-
tive array theory [9]–[11]. For instance, the simple approach in
[12] involves the procedure of solving a sequence of linearly
constrained least squares problems. In [13], Olen and Comp-
ton developed a systematic approach by assigning artificial in-
terferers in sidelobe regions. The power levels of interferers
at different sidelobes are iteratively adjusted according to the
deviation from the current synthesized pattern to the desired
one. This algorithm is able to control the sidelobe levels effec-
tively, but is lack of ability to control the responses in mainlobe
region. More importantly, this method needs to determine the
mainlobe region at each iteration and it suffers from high compu-
tational complexity. Thus, attempts have been made to overcome
these shortcomings. To reduce the computational complexity
and improve the flexibility, an iterative method was developed
in [14] to shape the array pattern. This method stems from [13]
and is able to control the responses in both sidelobe region and
mainlobe region. Another modification to [13] which aims at
improving the convergence rate and computational efficiency
was studied in [15], [16]. It is worth noting that in the above-
mentioned methods, some parameters, such as the power levels
of artificial interferences, are selected in an ad hoc way.
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Owing to the development of optimization techniques, pat-
tern synthesis has attracted much interest in the past several
years. In [17], the problem of pattern synthesis is modeled to be
a convex optimization problem which can be efficiently solved
by interior-point methods. For robust array pattern synthesis,
second-order cone programming and semidefinite programming
have been employed in [18]. The semidefinite relaxation is uti-
lized for designing various patterns in [19]. For a more complete
review of pattern synthesis, the interested reader is referred to
the recent work [20].

It should be noticed that in general the aforementioned meth-
ods cannot flexibly control the array response. The weight vector
has to be completely redesigned even if only a slight change of
the desired pattern is needed. This motivates us to develop a
novel accurate array response control (A2RC) algorithm, which
considers the problem of how to accurately control the array
response at a given direction. To this end, a deep analysis of
the optimal weight vector is carried out to show that the nor-
malized response at a fixed direction can be accurately adjusted
to an arbitrary level by making some simple modification to
the initial weight vector. On this basis, the problem of how to
make the normalized level at a given direction equal to a pre-
scribed value is formulated. In addition, an effective approach
to selecting an appropriate solution is developed by minimiz-
ing the pattern distortion. According to the A2RC algorithm,
we make the normalized response of a direction equal to the
desired level point-by-point, and succeed to synthesize patterns
for arbitrary arrays, including arrays with nonisotropic elements
and two-dimensional (2-D) arrays. Comparing with the tradi-
tional methods which were also based on the theory of adaptive
array [12]–[16], the proposed A2RC based pattern synthesis
approach is capable of accurately and flexibly controlling the
array response level, and has great application value due to its
simplicity and effectiveness.

The paper is organized as follows. In Section II, the problem
formulation of pattern synthesis and preliminary adaptive array
theory are given. The proposed A2RC algorithm is analyzed in
Section III and its application to pattern synthesis is discussed
in Section IV. In Section V, extensive numerical examples are
conducted to demonstrate the excellent performance of the pro-
posed method. Conclusions are drawn in Section VI.

II. PROBLEM STATEMENT AND ADAPTIVE ARRAY THEORY

A. Pattern Synthesis Formulation

Let us consider an N -element array in arbitrary geometry.
Without loss of generality and for the sake of clarity, we focus
on herein the problem of one-dimensional pattern synthesis. The
steering vector in direction θ can be written as

a(θ) = [g1(θ)e−jωτ1 (θ) , . . . , gN (θ)e−jωτN (θ) ]T (1)

where (·)T denotes the transpose operator, j =
√−1 is the

imaginary unit, gn (θ) (n = 1, . . . , N) denotes the pattern of
the nth element, τn (θ) represents the time-delay between the
nth element and the reference point, ω denotes the operating
frequency. The array response then can be expressed as

f(θ) = wHa(θ) (2)

where (·)H denotes the conjugate transpose, w is the weight
vector. The problem of pattern synthesis can be stated as: finding
an appropriate weight vector that makes the amplitude response
|f(θ)| meeting some specific requirements.

B. Adaptive Array Theory

It can be seen that the above pattern synthesis formulation
is data-independent. According to the adaptive array theory,
the beampattern can be adaptively synthesized with the data
received. In this case, the weight vector w is called adaptive
beamformer, which can be optimally obtained by maximizing
the output signal-to-interference-plus-noise ratio (SINR). More
precisely, the output of the beamformer is described as y(t) =
wHx(t), where x(t) is the N × 1 complex snapshot vector of
the array observation which is composed of the components
of signal, interference and noise. It is known that the optimal
weight vector wopt , which maximizes the SINR, is given by

wopt = αR−1
n+ia(θ0) (3)

where α is the normalization factor that does not affect the
output SINR, a(θ0) is the signal steering vector, Rn+i denotes
the N × N noise-plus-interference covariance matrix. When
considering a single interference, we can express Rn+i as

Rn+i = σ2
nI + σ2

i a(θi)aH(θi) (4)

provided that the noise is spatially-white and independent of the
interference signal. In (4), I is the identity matrix, σ2

n and σ2
i

stand for noise and interference powers, respectively, and a(θi)
is the interference steering vector. The pattern synthesized by
the optimal weight vector wopt is capable of forming a deep null
in the direction of interference. This property will be exploited
to develop the novel A2RC algorithm in what follows.

III. THE PROPOSED A2RC ALGORITHM

Although the data-dependent adaptive beamforming ap-
proaches are able to synthesize array patterns with deep nulls
at the interference directions, from the perspective of data-
independent pattern synthesis, the problem of how to accurately
control the array response as desired at a specific direction or
region has not been adequately addressed. This motivates us
to introduce a novel A2RC algorithm in this section. First, the
optimal weight vector is analyzed and a novel strategy to adjust
the response level is proposed. Then, the problem of determin-
ing the vector is formulated and the corresponding solution is
derived analytically. Finally, a simple and effective approach to
achieving desired pattern is devised.

A. Weight Vector Analysis

Applying the matrix inversion lemma, the optimal array
weight vector (3) can be rewritten as

wopt = αR−1
n+ia(θ0)

=
α

σ2
n

⎛
⎝a(θ0) −

σ 2
i

σ 2
n
a(θi)aH(θi)a(θ0)

1 + σ 2
i

σ 2
n
‖a(θi)‖2

2

⎞
⎠ (5)

where ‖ · ‖2 gives the Euclidean norm of a vector, the common
factor α/σ2

n does not affect the ultimate performance and will
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be omitted in the interest of brevity. Thus, the optimal weight
vector is alternatively expressed as

w� = w0 + μa(θi) (6)

where w0 is defined as

w0 � a(θ0) (7)

which can be regarded as a quiescent weight or initial weight,
and μ is a complex number given by

μ = − INRaH(θi)a(θ0)
1 + INR‖a(θi)‖2

2
(8)

where

INR = σ2
i /σ2

n (9)

denotes the interference-to-noise ratio.
From (6), it is seen that the optimal weight vector can be

interpreted as a sum of two terms. The first term w0 is the so-
called quiescent weight that has no ability to null interference.
To be consistent with the following analysis, we prefer to name
w0 as initial weight, since w� is achieved by making some
modification to w0 . The second term μa(θi) is the interference
steering vector multiplied by a complex factor μ, which is a
function of INR. As a result, the power response P�(θ) can be
written as

P�(θ) = |wH
� a(θ)|2 = |wH

0 a(θ)|2 + |μ∗v(θ, θi)|2

+ 2Re(μwH
0 a(θ)v(θi, θ))

= Pi(θ) + Pa(θ) + Pc(θ)

(10)

where (·)∗ stands for the conjugate operator, v(θi, θ) is the inner
product of a(θi) and a(θ), i.e.,

v(θi, θ) = aH(θ)a(θi) (11)

and Pi(θ) � |wH
0 a(θ)|2 represents the array power response

corresponding to the initial weight vector w0 , Pa(θ) �
|μ∗v(θ, θi)|2 is an non-negative additive term, and Pc(θ) �
2Re(μwH

0 a(θ)v(θi, θ)) is a cross term which could be either
positive or negative.

To proceed, we define the normalized power response at θi

with respect to the response at θ0 for a given weight vector w as

L(θi, θ0) =
P (θi)
P (θ0)

=
|wHa(θi)|2
|wHa(θ0)|2 . (12)

Meanwhile, we name the denominator term of L(θi, θ0) as the
normalized factor of normalized power response for ease of
exposition.

As a result, for the initial weight vector w0 , the normalized
power response can be expressed as

L0(θi, θ0) =
Pi(θi)
Pi(θ0)

=
|wH

0 a(θi)|2
|wH

0 a(θ0)|2 =
|v(θi, θ0)|2
‖a(θ0)‖4

2
(13)

and, for the optimal weight vector w� , one gets

L�(θi, θ0) =
P�(θi)
P�(θ0)

=
|wH

� a(θi)|2
|wH

� a(θ0)|2 . (14)

Obviously, we have L�(θ0 , θ0) = L0(θ0 , θ0) = 1.
It can be noticed that if the array weight vector is tuned

from w0 to w� by adding a term μa(θi), the normalized
array response at a certain direction θi can be modified
as well. This implies that by comparing the normalized power
responses L0(θi, θ0) and L�(θi, θ0), it is possible to find
out the mechanism to accurately control the array response
by modifying the weight vector. To this end, we first ex-
pand L�(θi, θ0) to the equation (15) at the bottom of this
page. A careful examination of (13) and (15) illustrates
if
∣∣(‖a(θ0)‖2

2 · ‖a(θi)‖2
2 − |v(θi, θ0)|2)INR + ‖a(θ0)‖2

2

∣∣ < ‖a
(θ0)‖2

2 , then L�(θi, θ0) > L0(θi, θ0), and vice versa. More-
over, according to the Cauchy-Schwarz (C-S) inequality, we
have ‖a(θ0)‖2

2 · ‖a(θi)‖2
2 ≥ |v(θi, θ0)|2 . As a consequence, if

we treat INR as a real-valued variable which can be both neg-
ative and positive, the following essential conclusion can be
obtained:

L�(θi, θ0)

{
> L0(θi, θ0), if INR ∈ I

≤ L0(θi, θ0), otherwise
(16)

where I =
( −2‖a(θ0 )‖2

2
‖a(θ0 )‖2

2 ‖a(θi )‖2
2 −|v (θi ,θ0 )|2 , 0

)
.

It is noteworthy that from now on INR denotes a real-valued
number only, whereas in the data-dependent processing algo-
rithm it has to be non-negative. Therefore, in the sequel, we
express L�(θi, θ0) as L�(θi, θ0 , INR). Obviously, it is readily

verified that if INR = 0 or −2‖a(θ0 )‖2
2

‖a(θ0 )‖2
2 ‖a(θi )‖2

2 −|v (θi ,θ0 )|2 , we have

L�(θi, θ0 , INR) = L0(θi, θ0). To make the above points clearer,
let us consider a ULA of N = 16 elements spaced by half wave-
length, the curves of L�(θi, θ0 , INR) and L0(θi, θ0) versus the
INR for θ0 = 0◦ and θi = 20◦ are plotted in Fig. 1. It is no-
ticed that L�(20◦, 0◦, INR) is less than L0(20◦, 0◦) as long as
INR > 0. As a matter of fact, this coincides with the data-
dependent beamforming methods in which a null is formed
at the interference direction, whereas the fixed beamformer
w0 = a(θ0) does not. Another important observation is that
for a given ρ > 0, there must exists (one or more) INR such that

L�(θi, θ0) =
|wH

� a(θi)|2
|wH

� a(θ0)|2 =
Pi(θi) + Pa(θi) + Pc(θi)
Pi(θ0) + Pa(θ0) + Pc(θ0)

=
|v(θi, θ0)|2

(
1 +

(
σ 2

i ‖a(θi )‖2
2

σ 2
n +σ 2

i ‖a(θi )‖2
2

)2
− 2σ 2

i ‖a(θi )‖2
2

σ 2
n +σ 2

i ‖a(θi )‖2
2

)

‖a(θ0)‖4
2 +

(
σ 2

i |v (θi ,θ0 )|2
σ 2

n +σ 2
i ‖a(θi )‖2

2

)2
− 2σ 2

i ‖a(θ0 )‖2
2 |v (θi ,θ0 )|2

σ 2
n +σ 2

i ‖a(θi )‖2
2

=
|v(θi, θ0)|2(

(‖a(θ0)‖2
2 · ‖a(θi)‖2

2 − |v(θi, θ0)|2)INR + ‖a(θ0)‖2
2

)2 (15)
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Fig. 1. Curves of L� and L0 versus INR for a ULA.

L�(20◦, 0◦, INR) = ρ if a(θ0) 	= βa(θi), where β ∈ C. This
leads to the following lemma.

Lemma 1: For any given θ0 and θi satisfying ∀β ∈ C, a
(θ0) 	= βa(θi), then for ∀ρ� > 0, there must exist INR� ∈ R
such that L�(θi, θ0 , INR�) = ρ�.

Proof: Given θ0 and θi , if a(θ0) 	= βa(θi) for ∀β, we
have ‖a(θ0)‖2

2‖a(θi)‖2
2 > |v(θi, θ0)|2 according to C-S in-

equality. Moreover, it is seen that L�(θi, θ0 , INR) → 0
as INR → ±∞, and L�(θi, θ0 , INR) → +∞ when INR =

−‖a(θ0 )‖2
2

‖a(θ0 )‖2
2 ‖a(θi )‖2

2 −|v (θi ,θ0 )|2 . Due to the continuity of L�(θi,

θ0 , INR), we can conclude that for ∀ρ� > 0, there must exist
INR� ∈ R such that L�(θi, θ0 , INR�) = ρ�. �

Furthermore, as shown by (8), it is known that μ can be
regarded as a function of INR. Thus, the following conclusion
can be straightforwardly achieved.

Lemma 2: For any given θ0 and θi satisfying ∀β ∈ C, a
(θ0) 	= βa(θi), then for ∀ρ� > 0, there must exist μ� ∈ C and
w� = w0 + μ�a(θi) such that L�(θi, θ0) = ρ�.

Proof: Lemma 2 is a direct consequence of Lemma 1 and
equation (8), the detailed proof is omitted. �

From Lemma 2, it is observed that one may control the nor-
malized power response at θi by adjusting the parameter μ. To il-
lustrate the rationality of this result, we show in Figs. 2 and 3 that
different μ can lead to different responses at a given θ. Again,
in this example, a ULA with 16 isotropic sensors is consid-
ered, θi = 20◦ and θ0 = 0◦. Figs. 2 and 3 show the synthesized
patterns for different μ. More exactly, we take μ as 0.0119 +
j0.0573 and −0.2974 + j0.0794, and find that the correspond-
ing responses at 20◦ are −30 dB and −10 dB, respectively.

Now, a quite natural question that one may raise is how to
determine the value of μ to achieve the desired response at a
specific direction. In the following subsections, this problem is
discussed in detail.

B. Weight Vector Determination via EVD

In the last subsection, it has been shown that if we treat
a(θ0) as an initial weight vector, a specific response at a given
direction θi can be obtained by tuning the complex constant μ.
This provides us useful insights to control the power response

Fig. 2. Adjust L� (20◦, 0◦) to −30 dB.

Fig. 3. Adjust L� (20◦, 0◦) to −10 dB.

at a specific direction θi . To be specific, if we need to make the
normalized power response at θ1 equal to a specific value ρ1 ,
then, according to Lemma 2, there must exists a μ1 ∈ C and a
corresponding weight vector w1 satisfying

w1 = w0 + μ1a(θ1). (17)

Since w0 and a(θ1) are known, the remaining task is to find
an appropriate μ1 to fulfill the response requirement. Assum-
ing μ1 has been obtained, if we need to control the response at
another direction θ2 to ρ2 , the weight vector is then adjusted
to w2 = w1 + μ2a(θ2) with an appropriate μ2 . In such a man-
ner, at the kth step, we need to find an appropriate wk which
makes the normalized power response at θk exactly equal to
ρk . Given wk−1 obtained at the (k − 1)th step, wk can thus be
expressed as

wk = wk−1 + μka(θk ). (18)

It can be seen that it is possible to control the array response at a
given direction by modifying the weight vector available rather
than completely redesigning the weight vector.

Now, we discuss the approach to determining the parameter
μk in each step. From (18), the normalized power response at
θk can be described as
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L
(k)
� (θk , θ0)

=
(wk−1 + μka(θk ))H a(θk )aH(θk ) (wk−1 + μka(θk ))
(wk−1 + μka(θk ))H a(θ0)aH(θ0) (wk−1 + μka(θk ))

.

(19)

Since the normalized power response at θk is ρk , i.e.,

L
(k)
� (θk , θ0) = ρk (20)

the above two equations are combined to result in an equation
which is used to solving μk as

zH
k Qkzk = 0 (21)

where

zk = [1 μk ]T (22)

and Qk is a 2 × 2 Hermitian matrix which can be expressed by
(23) at the bottom of the page, where P

(k−1)
� (θk ) and P

(k−1)
� (θ0)

stand for the power response at θk and θ0 of (k − 1)th step,
respectively, as P

(k−1)
� (θk ) = |wH

k−1a(θk )|2 and P
(k−1)
� (θ0) =

|wH
k−1a(θ0)|2 . In (23), dk is a complex-valued number as

dk = wH
k−1a(θk )‖a(θk )‖2

2 − ρkwH
k−1a(θ0)v(θk , θ0) (24)

which can be determined by wk−1 , a(θ0), a(θk ) and ρk .
Obviously, let ẑk be a solution to (21) and assume that

ẑk (1) 	= 0, it can be readily concluded that

μk = zk (2) = ẑk (2)/ẑk (1) (25)

where zk (i) is the ith element of a vector zk . It is known that
if Qk = O then ẑk could be an arbitrary vector. However, in
this case, we have P

(k−1)
� (θk ) − ρkP

(k−1)
� (θ0) = 0. In other

words, we have L
(k−1)
� (θk , θ0) = P

(k−1)
� (θk )/P

(k−1)
� (θ0) =

L
(k)
� (θk , θ0) = ρk . This implies that wk−1 has satisfied the re-

sponse requirement at θk , and hence, μk = 0 is taken. Therefore,
we only consider the case of Qk 	= O, i.e., there must exist at
least one non-zero eigenvalue.

The determinant of Qk is shown in (26) at the bottom of the
page. We show that ẑk and hence μk can be determined from the
eigenvectors of Qk . Let the eigenvalue decomposition (EVD)

of Qk be denoted as

Qk = UkΛkUH
k (27)

where Uk is an unitary matrix given by Uk = [ u1 1 u1 2
u2 1 u2 2

], and

Λk = diag ([λ1 , λ2 ]) with λ1 and λ2 being the eigenvalues
of Qk , diag ([λ1 , λ2 ]) stands for a diagonal matrix with the
diagonals given by λ1 and λ2 . According to (26), we have
λ1λ2 = det(Qk ) ≤ 0. Substituting (27) into (21), we have

ẑH
k UkΛkUH

k ẑk = yH
k Λkyk = λ1 |y1 |2 + λ2 |y2 |2 = 0 (28)

where

yk � UH
k ẑk = [y1 y2 ]T . (29)

Without loss of generality, assume that λ2 is non-zero, and
hence, we have |y2/y1 | =

√−λ1/λ2 , and yk can be further
rewritten as

yk = κ
[
1
√
−λ1/λ2e

jφ
]T

(30)

where κ is a nonzero complex-valued number and φ ∈ R. As a
result, the solution to (21) can be expressed as

ẑk = Ukyk = κ

[
u11 +

√−λ1/λ2u12e
jφ

u21 +
√−λ1/λ2u22e

jφ

]
(31)

and μk has the following form:

μk =
ẑk (2)
ẑk (1)

=
u21 +

√−λ1/λ2u22e
jφ

u11 +
√−λ1/λ2u12ejφ

(32)

provided that u11 +
√−λ1/λ2u12e

jφ 	= 0. Let F denotes the
set of φ as

F =
{
φ
∣∣∣u11 +

√
−λ1/λ2u12e

jφ 	= 0
}

(33)

then it can be verified that for any φ ∈ F ⊂ R, [1 μk ]T with μk

obtained as (32) must be a solution to (21).
Remark 1: As a matter of fact, in general we have F = R.

This can be inferred from (78) in Appendix B, where it is shown
that if Qk (2, 2) 	= 0, we have |u11 |2 	= −(λ1/λ2)|u12 |2 , then
u11 +

√−λ1/λ2u12e
jφ 	= 0 for any φ ∈ R. From (23), it can

be concluded that if ‖a(θk )‖4
2 	= ρk |v(θk , θ0)|2 , then F = R.

Qk =
[
wk−1 a(θk )

]H (a(θk )aH(θk ) − ρka(θ0)aH(θ0))
[
wk−1 a(θk )

]

=

[
P

(k−1)
� (θk ) − ρkP

(k−1)
� (θ0) dk

d∗k ‖a(θk )‖4
2 − ρk |v(θk , θ0)|2

]
(23)

det(Qk ) =
(
P

(k−1)
� (θk ) − ρkP

(k−1)
� (θ0)

) (‖a(θk )‖4
2 − ρk |v(θk , θ0)|2

)− |dk |2

= −ρk

(
P

(k−1)
� (θ0)‖a(θk )‖4

2 + P
(k−1)
� (θk )|v(θk , θ0)|2 − 2Re

(
wH

k−1a(θ0)aH(θk )wk−1‖a(θk )‖2
2v(θk , θ0)

))

= −ρk |wH
k−1a(θ0)‖a(θk )‖2

2 − wH
k−1a(θk )v∗(θk , θ0)|2

≤ 0 (26)
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Fig. 4. Geometric distribution of μk . (a) Illustration of μk . (b) Distribution of μk satisfying L� (20◦, 0◦) = −30 dB. (c) Distribution of μk satisfying
L� (−2◦, 0◦) = −2 dB.

In fact, the case ‖a(θk )‖4
2 = ρk |v(θk , θ0)|2 is seldom encoun-

tered in practical application. This is because ‖a(θk )‖4
2 =

ρk |v(θk , θ0)|2 yields ρk = ‖a(θk )‖4
2

|v (θk ,θ0 )|2 , which is the quiescent
normalized response L0(θk , θ0) when taking the weight vector
as a(θk ). Note that the response is normalized by the output
at θ0 but its beam center points to θk , so we have ρk > 1
in this case. We say that this situation barely happens, be-
cause that if θ0 denotes the beam center, we hardly adjust
the level at θk , where θk 	= θ0 , to be higher than the output
at θ0 .

C. Weight Vector Determination via Geometrical Approach

From (32), we know that there exists infinitely many μk that
make (20) hold, the determination of μk can be accomplished
by the aid of EVD. To further simplify the procedure of solving
μk , and more importantly, to have a geometrical insight into the
distribution of μk , another elegant approach is introduced. To
begin with, the following proposition is needed.

Proposition 1: For any a1 , a2 , b1 , b2 ∈ C, a complex number
c satisfies

c =
a1 + a2e

jφ

b1 + b2ejφ
(34)

where φ can be altered in the set D =
{
φ|b1 + b2e

jφ 	= 0
}

.
Then G, which denotes the trajectory set of [Re(c) Im(c)]T , is
the set or subset of circle C0 , the center point of C0 is

c0 =
1
hb

Ba� (35)

and the radius rc of the circle satisfies

r2
c =

1
h2

b

aT
� BTBa� − ha

hb
(36)

where a� =
[
aT

1 −aT
2

]T , al =
[

Re(al) Im(al)
]T , B =[

b1 Pb1 b2 Pb2
]
, bl =

[
Re(bl) −Im(bl)

]T(l = 1,

2), P =
[

0 −1
1 0

]
, ha = aT

1 a1 − aT
2 a2 , hb = bT

1 b1 − bT
2 b2 .

If D = R, then G = C0 , otherwise, G ⊆ C0 .
Proof: See Appendix A. �

Applying Proposition 1 to (32), we can obtain the following
proposition, which is crucial and enables us to find out all the
solutions to μk that meet the requirement (20) in a more simple
and intuitive manner.

Proposition 2: Assuming that φ in (32) altering in the set F ,
then the trajectory set of

[
Re(μk) Im(μk )

]T is a circle Cμ or
subset of Cμ , with center point

cμ =
1

Qk (2, 2)

[−Re(Qk (1, 2))

Im(Qk (1, 2))

]
(37)

and a radius of

rμ =

√−det(Qk )
|Qk (2, 2)| (38)

Proof: Proposition 2 is a consequence of Proposition 1
with a1 = u21 , a2 =

√−λ1/λ2u22 , and b1 = u11 , b2 =√−λ1/λ2u12 . The detailed proof is given in Appendix B. �
As expected, Proposition 2 describes the trajectory of μk . Let

us define a function g as

g(v) = v(1) + jv(2) (39)

where v is a 2 × 1 vector. Thus, for any φ ∈ F , we have

μk = g
([

cμ(1) + rμcosφ cμ(2) + rμsinφ
]T)

= −Q∗
k (1, 2)

Qk (2, 2)
+

√−det(Qk )
|Qk (2, 2)| ejφ (40)

which satisfies the specific condition (20). Note that (40) is
equivalent to (32), but it can obtain μk in a simpler way without
EVD. In addition, it illustrates μk geometrically as in Fig. 4(a).
This helps us to find some latent characteristics more clearly as
shown below.

D. Selection of μk

It has been shown that we have infinitely many solutions of
μk to fulfill the specific requirement (20). A natural question
is that will all solutions result in the same performance? If not,
with which criterion the solution should be selected to achieve
the desired array response? In fact, in the above analysis, we
have not taken into account the possible change of the response
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at θk−1 if we modify the weight vector wk−1 to wk to satisfy
the desired response at θk . Therefore, an ideal criterion is that
designing wk (or equivalently selecting μk ) to achieve the de-
sired response at θk while the responses at any other directions
remain unchanged. Mathematically, this can be described as

{
L

(k)
� (θ, θ0) = ρk , for θ = θk

L
(k)
� (θ, θ0) = L

(k−1)
� (θ, θ0), for θ 	= θk .

(41)

Undoubtedly, such an criterion cannot be achieved, since the
array response is a continuous function. Nevertheless, (41) pro-
vides a useful guideline to design a pattern with practically
satisfactory performance. Thus, we formulate the problem of
response control as follows

min
μk

∫
θ 	=θk

∣∣∣L(k)
� (θ, θ0) − L

(k−1)
� (θ, θ0)

∣∣∣ dθ

s.t. L
(k)
� (θk , θ0) = ρk . (42)

In fact, (42) can be equivalently expressed as

min
μk

∫
θ∈Ω

∣∣∣L(k)
� (θ, θ0) − L

(k−1)
� (θ, θ0)

∣∣∣ dθ

s.t. L
(k)
� (θk , θ0) = ρk (43)

where Ω denotes the whole angle sector. A common approach
to tackling the integration is using discretization. The discrete
form of (42) is given by

min
μk

∑
θ 	=θk

∣∣∣L(k)
� (θ, θ0) − L

(k−1)
� (θ, θ0)

∣∣∣

s.t. L
(k)
� (θk , θ0) = ρk . (44)

The above optimization problem can be optimally solved by
global search, i.e., by tuning φ from 0 to 2π. Of course, this
approach has the known drawback of high computational com-
plexity. Nevertheless, the result of global search is helpful to
demonstrate some implicit characteristics about the best μk ,
and further gives us enlightenment to design the optimal solu-
tion in a simple way. Therefore, we carry out an example to
examine the performance change when altering μk on Cμ or
equivalently sliding φ on [0, 2π].

Here, a ULA of 16 isotropic elements is used, the angle
sector is Ω = [−90◦, 90◦], the initial weight vector is w0 =
a(θ0), where θ0 is fixed at 0◦. We set k = 1 and θk = 20◦, and
aim to synthesize a pattern with L�(20◦, 0◦) = −30 dB. The
distribution of μk can be found in Fig. 4(b). In this case, we can
figure out cμ =

[
0.0183 0.0881

]T and rμ = 0.0314.
To measure the performance of different μk on Cμ , we uni-

formly discretize the corresponding pattern of each μk into I
points and define the cost function at the kth step as

J
Δ=

1
I

I∑
i=1

∣∣∣L(k)
� (θi, θ0) − L

(k−1)
� (θi, θ0)

∣∣∣ . (45)

Obviously, it is seen that J measures the average deviation
between L

(k)
� (θ, θ0) and L

(k−1)
� (θ, θ0). In this example, we

uniformly sample Ω every 0.02◦ and hence obtain 9001 discrete
points, i.e., I = 9001. Fig. 5 shows the curves of J versus φ.

Fig. 5. J versus φ (L� (20◦, 0◦) = −30 dB).

Fig. 6. Response pattern when taking μk = 0.0119 + j0.0573.

Here, φ is the argument relative to (Re(cμ) Im(cμ)) and its
geometric meaning has been shown in Fig. 4(a).

From Fig. 5, we notice that J achieves the minimum value at
φopt = 4.5077 rad. A brief anlysis gives that π < φopt < 1.5π
in this case. Combining Fig. 4(b), we find that the optimal μopt

is located relatively near to original point, where

μopt � μk |φ=φo p t
. (46)

This observation implies that a μk with relatively less module
value may lead to a relatively lower cost function, and finally
generate a pattern with better performance.

To illustrate the rationality of above inference, we compare
the performance when μk is set to be with different module.
To be specific, the first approach takes μk as 0.0119 + j0.0573
and the second approach chooses μk = 0.0247 + j0.1188, their
module value are 0.0586 and 0.1213, respectively. We can
test that in both cases, μk locates on the circle plotted in
Fig. 4(b). The corresponding patterns have been normalized by
the power output at θ0 , and are shown in Figs. 6 and 7, respec-
tively. From Figs. 6 and 7, it is observed that in both cases
L�(20◦, 0◦) get their desired values. However, the locations
of the maximum values have been shifted slightly in both
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Fig. 7. Response pattern when taking μk = 0.0247 + j0.1188.

cases. More precisely, in the first case, it is seen that the
peak value is about L�(−0.04◦, 0◦) = 4 × 10−4 dB. While in
the seconde case, the maximum value of the pattern is about
L�(−0.07◦, 0◦) = 1.9 × 10−3 dB.

In summary, we deduce that the μk with a smaller module
value may lead to less pattern distortion. As a consequence,
by setting μ with the smallest module value, the corresponding
pattern may perform best. In the sequel, we will give a more
theoretical explanation and further propose a tip that is both
simple and effective to select an appropriate μk .

Recalling the wk and wk−1 , we have

L
(k−1)
� (θ, θ0) =

P
(k−1)
� (θ)

P
(k−1)
� (θ0)

=
|wH

k−1a(θ)|2
|wH

k−1a(θ0)|2 (47)

L
(k)
� (θ, θ0) =

P
(k)
� (θ)

P
(k)
� (θ0)

=
|wH

k a(θ)|2
|wH

k a(θ0)|2

=
P

(k)
i (θ) + P

(k)
a (θ) + P

(k)
c (θ)

P
(k)
i (θ0) + P

(k)
a (θ0) + P

(k)
c (θ0)

(48)

where P
(k)
� (θ) denotes the power response at θ in the kth step.

In (48), P
(k)
i (θ) � |wH

k−1a(θ)|2 , P
(k)
a (θ) � |μ∗

k v(θ, θk )|2 ,

P
(k)
c (θ) � 2Re(μkwH

k−1a(θ)v(θk , θ)). From (47), we can

rewrite L
(k−1)
� (θ, θ0) as

L
(k−1)
� (θ, θ0) =

P
(k)
i (θ)

P
(k)
i (θ0)

. (49)

Therefore, in order to make the pattern distortion |L(k)
� (θ, θ0) −

L
(k−1)
� (θ, θ0)| sufficiently small, we should select a μk such

that P
(k )
i (θ)+P

(k )
a (θ)+P

(k )
c (θ)

P
(k )
i (θ0 )+P

(k )
a (θ0 )+P

(k )
c (θ0 )

approximates to P
(k )
i (θ)

P
(k )
i (θ0 )

. Nat-

urally, this can be achieved by enforcing both |P (k)
a (θ) +

P
(k)
c (θ)| and |P (k)

a (θ0) + P
(k)
c (θ0)| as small as possible.

According to the definition of P
(k)
a (θ) and P

(k)
c (θ) given

above, they can be rewritten as P
(k)
a (θ) = |μk |2 |v(θk , θ)|2

and P
(k)
c (θ) = 2|μk ||v(θk , θ)|γk , respectively, where γk =

|wH
k−1a(θ)|cos(ϕk ) with ϕk = ∠(μkwH

k−1a(θ)v(θk , θ)), here

Fig. 8. |Pa (θ0 ) + Pc (θ0 )| versus φ (L� (20◦, 0◦) = −30 dB).

∠(·) returns the argument of a complex number, the scope of
argument is [0, 2π). Therefore, |P (k)

a (θ) + P
(k)
c (θ)| can be re-

expressed as

|P (k)
a (θ) + P (k)

c (θ)| = |v(θk , θ)|2
∣∣∣∣ |μk |2 +

2γk |μk |
|v(θk , θ)|

∣∣∣∣ . (50)

Obviously, it is seen that, in order to obtain relatively smaller
values of both |P (k)

a (θ) + P
(k)
c (θ)| and |P (k)

a (θ0) + P
(k)
c (θ0)|,

we should select a μk with smallest modulus among Cμ .
From Fig. 4(a), we know the nearest point to origin point

among all points on the circle Cμ , is the intersection of circle
Cμ and the line which passes the origin and center cμ . Defining

φa � mod(∠g(cμ) + π, 2π), μa � μk |φ=φa
(51)

where mod(a, b) denotes the modulo operator on a by b. Then
a short analysis gives that

μa = arg min
μk ∈Cμ

|μk | = g

( |cμ | − rμ

|cμ | cμ

)
. (52)

The coordinates of μa can be found in Fig. 4(b).
To further illustrate its rationality, the curve of |P (k)

a (θ0) +
P

(k)
c (θ0)| versus φ is depicted in Fig. 8 given the same settings

of the previous example. It is seen that |P (k)
a (θ0) + P

(k)
c (θ0)|

achieves the minimum at φ = φa . Furthermore, from (51) we
can figure out φa = 4.5077 rad. In fact, this is also the opti-
mal value we have obtained by global search in the above test
example. Therefore, μa = μopt in this case. This agrees with
the theoretical analysis above, meanwhile, it gives the rational
explanation of setting μ as μa to obtain a pattern with well per-
formance. Additionally, it is interesting to note that in this sce-
nario we can further figure out μa = 0.0119 + j0.0573, which
coincides with the results shown in Fig. 2.

From the above test and analysis, it is found that a satisfac-
tory pattern can be obtained by setting μ as μa . Note that al-
though μa in (52) may not be the optimal solution to the original
optimization problem (43) or (44), it can result in a sufficiently
small cost value in (43) or (44). Thus, the choice of μa as (52)
is still meaningful and can offer satisfactory performance as
shown in our simulations.
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Fig. 9. |P (k )
a (θ0 ) + P

(k )
c (θ0 )| versus φ (L� (−2◦, 0◦) = −2 dB).

Fig. 10. J versus φ (L� (−2◦, 0◦) = −2 dB).

In the above example, the effectiveness of the proposed
method is shown by sidelobe response control. To further
demonstrate the performance, an additional example is carried
out to control response in mainlobe region. Here, θk = −2◦,
it is required to adjust its normalized response to −2 dB,
other parameters are same as the previous example. It can
be calculated that cμ =

[−0.4280 −0.4608
]T , rμ = 0.3562,

φa = 0.8223 rad. For the purpose of simulation comparison, we
test the performance of another choice of φ, that is φb , which
satisfies

φb � ∠g(cμ). (53)

It can be found that μk obtains its maximum module value
by setting μk as μb � μk |φ=φb

. We can calculate that φb =
3.9639 rad in this example.

Fig. 4(c) displays the distribution of μk , the locations of μa

and μb are also shown there. Figs. 9 and 10 display |P (k)
a (θ0) +

P
(k)
c (θ0)| and J versus φ, respectively. It is seen that both

|P (k)
a (θ0) + P

(k)
c (θ0)| and J obtain their maximum values

as φ = φb . In addition, when φ = φa , |P (k)
a (θ0) + P

(k)
c (θ0)|

Fig. 11. Response patterns comparison.

Fig. 12. Response pattern when taking μk as μb in Fig. 4(c).

reaches its minimum while J does not. In other words, μa is
not the optimal solution to (43) or (44) in this scenario. Nev-
ertheless, it is seen from Fig. 10 that the value of cost function
at φa is actually sufficiently small. Moreover, from Fig. 10
we find that there exists two optimal solutions to minimize J ,
the corresponding optimal φ equals to φopt1 = 0.6754 rad and
φopt2 = 0.9692 rad. Then the optimal pattern can be obtained
by setting φ = φopt1 or φ = φopt2 .

The synthesized patterns when setting μk as μa and μb are
shown in Figs. 11 and 12, respectively. Obviously, in both cases,
we have L�(−2◦, 0◦) = −2 dB. However, the corresponding
pattern in Fig. 12 has been distorted seriously, it forms a notch
near θ0 . In order to examine the difference between the patterns
when taking μk = μa and μk = μopt . Fig. 11 also displays the
optimal array response by setting μk = μopt . It is interesting to
note that the two optimal solutions obtain a same beam pattern,
so here the only one optimal pattern is demonstrated. It can
be seen that the synthesized pattern when setting μk = μa is
almost the same as the optimal pattern. The second example
also validates the effectiveness of choosing μk by (52).
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TABLE I
SUMMARY OF A2 RC BASED PATTERN SYNTHESIS

Now we can select a relative suitable μa with low complexity.
Despite it may not be the optimal solution to (43) or (44),
simulation results indicate that the choice of μa as in (52) gets
an obvious performance improvement in vast majority cases.

IV. APPLICATION OF A2RC TO PATTERN SYNTHESIS

In the above section, we have devised the A2RC algorithm,
which enables us to accurately control the normalized response
at a given direction. In what follows, its application to pattern
synthesis is discussed. In brief, assuming that the desired pattern
is Ld(θ), it can be synthesized by successively adjusting the
normalized response at each angle θk to Ld(θk ).

A. Considerations for the Application

Prior to the detailed discussion of the application, we have
to consider the problem of how to choose the normalized factor
and whether it will change along with the step. To this end,
we denote by L

(k)
� (θ) the normalized response after the kth

step. It is known that the ideal normalized factor in the kth step
should be the maximum response after this step to achieve the
accurate response control. Obviously, such a normalized factor
is unavailable unless the kth step is completed. Fortunately, as
discussed earlier in the A2RC algorithm, the response difference
between two consecutive steps is minimized. This implies that
the response in the sector excluded the angle being controlled
(especially those far away from this angle) would not have sig-
nificant change. Therefore, in the kth step, the normalized factor
can be chosen as L

(k)
� (θ(k−1)

0 ), where θ
(k−1)
0 is the reference an-

gle associated with the maximum normalized response after the
(k − 1)th step. This conclusion can be verified by the results
shown in Figs. 6 and 11, in which it is clearly observed that
the maximum normalized response are nearly unchanged along
with the step.

Remark 2: In fact, the normalized factor can be chosen as
L

(k)
� (θ0) for a fixed angle θ0 especially when there are no spe-

cific requirements for the mainlobe.

B. Pattern Synthesis Using A2RC

It is seen that in the A2RC algorithm, the weight vector can be
analytically obtained in each step, and the sidelobe and mainlobe
can be controlled in a very similar manner. More specifically,
for the mainlobe control, in the kth step we first determine the
angle at which the response is maximum, i.e.,

θ
(k)
0 = arg max

θ∈Ωm

L
(k−1)
� (θ) (54)

where Ωm denotes the mainlobe angle sector of the desired
pattern. Then, we detect the angle where the response deviates
most from the desired one, i.e.,

θk = arg max
θ∈Ωm

|L(k−1)
� (θ) − Ld(θ)|. (55)

At last, the response at this angle is adjusted using the A2RC
algorithm. Such a procedure is terminated until the mainloble
response is satisfactorily achieved as desired.

For sidelobe synthesis, in the kth step, we first determine the
angle sector at which the response is higher than the desired
level as

Ω̃(k)
s = {θ|L(k−1)

� (θ) − Ld(θ) > 0, θ ∈ Ωs} (56)

where Ωs denotes the whole sidelobe angle sector of the de-
sired pattern. Next, we find out the angle at which the response
deviates most from the desired pattern, i.e.,

θk = arg max
θ∈Ω̃(k )

s

(
L

(k−1)
� (θ) − Ld(θ)

)
. (57)

Then, the A2RC algorithm is applied to adjust the response at
θk to the desired value. The above steps are repeated until the
response is satisfactorily synthesized. The A2RC based pattern
synthesis approach is summarized in Table I.

Remark 3: In the Step 2 of Table I, we find the angle θk

by two different ways, according to which region (mainlobe
or sidelobe) required to be controlled. When both mainlobe
region and sidelobe region are needed to be adjusted, the A2RC
algorithm is first applied to synthesize the mainlobe region to
the desired pattern, and then to synthesize the sidelobe region. In
case that the synthesized mainlobe (sidelobe) pattern is distorted
after the sidelobe (mainlobe) synthesis, the A2RC algorithm
should be further applied.

C. Comparison With Philip’s Method [14]

As discussed above, the proposed A2RC based pattern syn-
thesis approach adjusts the response at each angle successively
to the desired value. The proposed method is devised based
on the adaptive array theory. In fact, Philip et al. also adopted
this theory for pattern synthesis in [14]. Philip proposed to as-
sign multiple artificial interferences on peak sidelobe locations.
The optimal weight vector is obtained by minimizing the sum
of weighted squared errors between synthesized and desired
patterns. Iterations on the weighting function in both mainlobe
and sidelobe regions insure a desired mainlobe shape as well
as desired levels. However, the parameters in Philip’s method
are selected in an ad hoc way. In our proposed method, the pa-
rameter of weight vector can be obtained analytically. In brief,
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Fig. 13. Simulation results for pattern synthesis of uniform sidelobe.

the main difference between the proposed A2RC based pattern
synthesis and Philip’s method [14] includes:

� In each step, the response at a specific angle can be con-
trolled accurately, while Philip’s method does not.

� The proposed method controls pattern successively.
� The INR is altered as an variable that can be either positive

or negative, whereas it is required to be nonnegative in
Philip’s method.

� The proposed method modifies the weight vector succes-
sively without matrix inversion, and hence it is computa-
tionally attractive.

V. NUMERICAL RESULTS

In this Section, various simulation results are provided to
demonstrate the effectiveness of the proposed approach. First,
a linear array with isotropic elements is considered. Several
examples with different desired patterns are carried out. Next,
we consider examples of nonisotropic elements and nonuni-
form random linear array. Finally, an example to synthesize
two-dimensional patterns is given to show the generality of the
proposed method.

A. Linear Array With Isotropic Elements

In this subsection, all simulations are carried out by assuming
a linear array with isotropic elements. The main beams are
steered to θ0 = 0◦ unless otherwise specified.

1) Pattern Synthesis of Uniform Sidelobe: In the first ex-
ample, a ULA with 16-elements is considered and the desired
pattern has uniform sidelobe. The response of the sidelobe is
required to be no larger than −25 dB. The synthesis process
starts with the initial weight vector a(θ0). Fig. 13 shows the
synthesized patterns at different steps.

At the first step, from the initial pattern we find out the location
of sidelobe peak whose response deviates most from desired
pattern. Let the location be θ1 and in this example, we have
θ1 ≈ −10◦ and the response at this direction is controlled by
the proposed method. Fig. 13(a) shows the resultant pattern. It
is seen that the response at θ1 is exactly equal to −25 dB.

At the second step, the location of the sidelobe peak (of the re-
sultant pattern after the first step) whose response deviates most
from the desired pattern is determined. The angle is θ2 ≈ 10◦.
By applying the proposed method, the response at θ2 has been
accurately controlled to −25 dB, whereas the response at θ1 is
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Fig. 14. Various of patterns synthesized by the proposed method.

Fig. 15. 2-D pattern synthesis with a 10 × 10 isotropic elements planar array.

almost unchanged as shown in Fig. 13(b). In fact, the response
at θ1 is insignificantly reduced from −25 dB to −25.5 dB. Any-
way, the response at this direction meets the requirement of the
desired pattern.

According to the proposed method, the above process is re-
peatedly until the pattern is close enough to the desired pattern.
It can be noticed from Fig. 13(c) that after 7 steps all sidelobe
levels are very close to the desired level. As shown in Fig. 13(d),
after 25 steps, the synthesized beampattern meets the design re-
quirement and is almost same as Chebyshev pattern.

2) Nonuniform Sidelobe Control: Following the example
and simulation settings in [12], the desired sidelobe level is
assumed to be nonuniform, i.e., it varies with the direction
θ. The synthesized pattern is shown in Fig. 14(a), where
the desired patterns are shown by dashed lines. Again, it
is found that the proposed A2RC based approach performs
well.

3) Pattern Synthesis With Constraint in Mainlobe: The third
example considers the case where the desired pattern has a flat
top in the mainlobe region, which was studied in [14]. Being the
same as the first example, a ULA of 16 elements is considered.
The mainlobe region of the desired pattern is [−8◦, 8◦]. The
sidelobe level is required to be lower than −25 dB. In this case,
we first control the mainlobe response to achieve the desired
mainlobe pattern and then turn to adjust the sidelobe responses.
The resulting pattern is depicted in Fig. 14(b). It is seen that
both the mainlobe and side sidelobe can be properly synthesized
by the proposed method.

B. Nonisotropic Linear Random Array

In this subsection, we consider a 33-element nonisotropic
linear random array, which was described in [4], [12], [13]. The
individual pattern for the nth element is given by

gn (θ) =
cos [πln sin(θ + τn )] − cos(πln )

cos(θ + τn )
(58)

where τn and ln represent the orientation and length of the
element. More description of the array can be found in [13].
Fig. 14(c) shows the synthesized pattern in this case and
also validates the effectiveness of the A2RC based pattern
synthesis method for nonisotropic linear random arrays.

C. Pattern Synthesis for Two-Dimensional Array

In order to demonstrate the generality of the proposed ap-
proach, an example of pattern synthesis for two-dimensional
array is presented. Without loss of generality, we consider a
planar array composed of 10 × 10 isotropic elements which are
spaced by half a wavelength. Fig. 15(a) shows the desired pattern
Ld(u, v), where u = sin(θe)cos(θa), v = sin(θe)sin(θa), and
θe and θa denote elevation and azimuth angles, respectively. The
beam steers to (u0 , v0) = (0, 0.5). The desired sidelobe level in-
side the set Θ = {(u, v)| − 0.8 ≤ u ≤ 0,−0.9 ≤ v ≤ −0.1} is
set to be lower than −30 dB, otherwise it is required to achieve
a sidelobe level below −15 dB.

Fig. 15(b) displays the resulting synthesized pattern and
Fig. 15(c) plots its top view. It can be seen that the side-
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lobe responses both in and outside the region Θ can be cor-
rectly controlled. The extensions of the A2RC based pattern
synthesis method to other configurations are straightforward.
Due to space limitation, they are omitted in this work.

VI. CONCLUSION

In this paper, a novel algorithm of accurate array response
control (A2RC) is devised. It is shown that the array pattern
response at a given direction can be accurately adjusted to any
predefined level. Besides, an effective mechanism of finding out
a suitable weight vector which would not result in pattern distor-
tion has been presented. The application of the A2RC algorithm
to pattern synthesis is then discussed. The proposed A2RC based
pattern synthesis approach successively control the responses at
directions where deviations exist. In each step, it adjusts the
response level at the given location by modifying the current
weight vector with the help of a complex factor μ and the steer-
ing vector at the given direction. A number of examples under
various problem settings have been carried out to demonstrate
the effectiveness of the A2RC approach. As a future work, we
shall consider the problem of how to simultaneously control
the pattern responses of multiple directions, so as to reduce the
number of steps to achieve the desired pattern.

APPENDIX A
PROOF OF PROPOSITION 1

For the sake of clarity, in the sequel, the real and imaginary
parts of a complex number x are defined as

xr = Re(x), xi = Im(x). (59)

For briefness, we consider the case that D = R. Then
for any φ ∈ R, equation (34) can be alternatively rep-
resented by (a1 − cb1)/(cb2 − a2) = ejφ and hence we
have |cb1 − a1 | = |cb2 − a2 |. By applying the notations in
(59), we get |(cr + jci)(b1r + jb1i) − (a1r + ja1i)| = |(cr +
jci)(b2r + jb2i) − (a2r + ja2i)|, which can be written in a
compact form as

f(c) = cTBΛBTc − 2aT
� BTc + aT

1 a1 − aT
2 a2 = 0 (60)

where c = [cr ci ]T , Λ = diag ([1 1 −1 −1]), B = [b1

Pb1 b2 Pb2 ], bl = [blr −bli ]T , P = [ −1
1 ], a� = [aT

1

− aT
2 ]T , al = [alr ali ]T(l = 1, 2). A careful examination shows

that blbT
l + PblbT

l PT =
(
bT

l bl

)
I (l = 1, 2) and BΛBT =(

bT
1 b1 − bT

2 b2
)
I. Let us define

ha � aT
1 a1 − aT

2 a2 , hb � bT
1 b1 − bT

2 b2 (61)

then f(c) can be rewritten as

f(c) = hbcTc − 2aT
� BTc + ha

= hb

(
c − 1

hb
Ba�

)T (
c − 1

hb
Ba�

)

− 1
hb

aT
� BTBa� + ha = 0. (62)

This implies that c locates at a circle C0 with center of c0 =
1
hb

Ba� and and a radius of

rc =

√
1
h2

b

aT
� BTBa� − ha

hb
.

This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Again, we use xr = Re(x) and xi = Im(x) to denote the
real and imaginary parts of the complex number x, respectively.
For simplicity, it is assumed that F = R where F is defined as
(33). From (32), we note that μk corresponds to c in (34) with
a1 = u21 , a2 =

√−λ1/λ2u22 , b1 = u11 , b2 =
√−λ1/λ2u12 .

According to Proposition 1, we have

a1 =
[
u21r u21i

]T (63)

a2 =
[√−λ1/λ2u22r

√−λ1/λ2u22i

]T
(64)

b1 =
[
u11r −u11i

]T (65)

b2 =
[√−λ1/λ2u12r −√−λ1/λ2u12i

]T
(66)

a� =
[

u21r u21i −
√

−λ1

λ2
u22r −

√
−λ1

λ2
u22i

]T

(67)

B =

⎡
⎢⎢⎢⎣

u11r u11i

√
−λ1

λ2
u12r

√
−λ1

λ2
u12i

−u11i u11r −
√

−λ1

λ2
u12i

√
−λ1

λ2
u12r

⎤
⎥⎥⎥⎦ (68)

Recalling (61), we have

ha = |u21 |2 + (λ1/λ2)|u22 |2 (69)

hb = |u11 |2 + (λ1/λ2)|u12 |2 . (70)

Let us first derive the coordinate of cμ , which represents
the center of the distribution circle. From (35), cμ can be
described as

cμ =
1
hb

Ba� =

[
(u11ru21r + u11iu21i)(λ2 − λ1)
(u11ru21i − u11iu21r )(λ2 − λ1)

]

λ2 |u11 |2 + λ1 |u12 |2 . (71)

It should be noted that in the above equation, the or-
thogonality of row vectors of U has been utilized, i.e.,[
u∗

11 u∗
12
] [

u21 u22
]T = 0, which can be also written as

(u11ru21r + u11iu21i) + (u12ru22r + u12iu22i) = 0 (72)

(u11ru21i − u11iu21r ) + (u12ru22i − u12iu22r ) = 0. (73)

Since Q = UΛUH , according to (72) and (73), we have

Re(Q(1, 2)) = (λ1 − λ2)(u11ru21r + u11iu21i) (74)

Im(Q(1, 2)) = (λ2 − λ1)(u11ru21i − u11iu21r ). (75)

As a result, the numerator of the last term of (71) can be written
as [−Re(Q(1, 2)) Im(Q(1, 2))]T .
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We now proceed to consider the denominator of cμ in the
last term of (71). By expanding Q = UΛUH , it can be readily
obtained that

λ1 |u21 |2 + λ2 |u22 |2 = Q(2, 2). (76)

Since U is an unitary matrix, we have |u11 |2 + |u12 |2 =
|u12 |2 + |u22 |2 = |u11 |2 + |u21 |2 = 1, which further yields

|u12 |2 = |u21 |2 , |u11 |2 = |u22 |2 . (77)

Then, by combining (76) and (77), one gets

λ2 |u11 |2 + λ1 |u12 |2 = Q(2, 2). (78)

Consequently, it can be concluded that

cμ =

[
−Re(Q(1, 2))
Im(Q(1, 2))

]

Q(2, 2)
. (79)

Now, we move to the discussion of rμ . From (71), we get

aT
� BTBa� = (1 − λ1/λ2)

2 |u11 |2 |u21 |2 . (80)

Combining (69), (70), (77), and (80), the following compact
expression is obtained

aT
� BTBa� − hahb = −λ1/λ2 . (81)

Since det(Q) = λ1λ2 , r2
μ can be obtained from (78) and (81)

r2
μ =

aT
� BTBa� − hahb

h2
b

=
−det(Q)
Q2(2, 2)

(82)

which can be reexpressed as

rμ =

√−det(Q)
|Q(2, 2)| . (83)

This completes the proof.
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