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Abstract—This paper presents a flexible array response control
algorithm via oblique projection, abbreviated as FARCOP, and its
application to array pattern synthesis. The proposed FARCOP al-
gorithm stems from the adaptive array theory, and it can flexibly,
precisely and simultaneously adjust the array response levels at
multiple angles based on an arbitrarily given weight vector. Dif-
ferent from the existing approaches, the proposed FARCOP algo-
rithm controls multi-point responses by linearly transferring the
given weight vector, with a transformation matrix containing a set
of parameters, each of which can be very easily determined by the
desired response level (at the control angle). Owing to the fact that
those parameters are independent of each other, the response levels
at the control angles can be either individually or jointly and, there-
fore, flexibly adjusted. Since the parameter phases can be arbitrary,
we take the beampattern into account and propose to uniquely
choose the optimal parameters under the typical criterion of max-
imum white noise gain (WNG). Accordingly, a gradient projection
(GP) algorithm is devised to achieve the optimal solution. Moreover,
a closed-form solution is derived for the centro-symmetric array. In
addition, the application of the FARCOP algorithm to pattern syn-
thesis is discussed. Comparing to the state-of-the-art methods like
multi-point accurate array response control (MA2RC), the pro-
posed FARCOP algorithm controls the array responses more flexi-
bly with lower computational complexity. Representative examples
are presented to demonstrate the effectiveness and superiority of
the FARCOP algorithm under various situations.

Index Terms—Array response control, oblique projection, array
pattern synthesis, adaptive array theory.

I. INTRODUCTION

S ENSOR arrays have found numerous applications in the
fields of, for example, radar, wireless communication and

remote sensing [1]. In general, how to flexibly control the array
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response is of great significance in practice. For instance, in a
radar system, it is effective to suppress the undesirable interfer-
ence by shaping a beampattern with fixed nulls. While in some
communication systems, it enables users to receive data more
efficiently by freely adjusting the transmitted beampatterns or
synthesizing multiple-beam patterns. Additionally, synthesizing
a beampattern with broad mainlobe is beneficial to extend mon-
itoring areas in satellite remote sensing.

In the past years, quite a number of approaches to array re-
sponse control1 have been developed. For example, in data-
dependent scenarios, the linearly constrained minimum variance
(LCMV) [2] method is able to control array responses of specific
points by imposing linear constraints on the output of beam-
former. A variant of LCMV is presented in [3] to adjust the
mainlobe responses and control the sidelobe levels, with the aid
of the semidefinite relaxation (SDR) technique [4]. In [5], the
response levels at a desired range of angles are adjusted to ex-
ceed a constant value by quadratically restricting the magnitude
responses of two steering vectors. The concept of spectral fac-
torization is introduced in [6] to realize magnitude response con-
trol. In [7], a new array response control approach is presented
by transforming the array output power and the magnitude re-
sponse to linear functions of the autocorrelation sequence of the
array weight. This method is able to control certain response
region with specified beamwidth and response ripple. A strat-
egy of accurate main beam control is developed in [8], where
a class of approaches are provided to solve the resulting prob-
lem. In [9], desired sidelobe is achieved with second-order cone
program (SOCP), which ensures that the sidelobes are exactly
below the required level.

To control the array response in data-independent scenarios,
a conjugate symmetric weight vector is obtained in [10] to make
the responses satisfy specified non-convex lower bound con-
straints, by utilizing the symmetric geometries of linear and pla-
nar arrays. A simple iterative algorithm is proposed in [11] to
precisely adjust the responses of certain points to their desired
levels. The unified approach presented in [12] allows the qui-
escent response of the beamformer to be specified as any de-
sirable fixed-weight response. Recently, an optimal and precise
array response control (OPARC) algorithm has been reported in
[13] and [14], where array responses are precisely controlled by

1In this work, array response control is defined as designing a weight vec-
tor such that the corresponding array response fulfills specific requirements.
It includes adaptive (data-dependent) and non-adaptive (data-independent) ap-
proaches. We shall focus on the latter case.
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assigning virtual interferences. Additionally, an accurate array
response control (A2RC) algorithm and a weight vector orthog-
onal decomposition (WORD) algorithm were proposed in [15]
and [16], respectively, to control array response based on an
arbitrarily-specified weight vector. Since these two approaches
are restricted to adjust the response level of a single point, a
multi-point accurate array response control (MA2RC) algorithm
is thus developed in [17] to precisely control array responses at
multiple angles. However, a relatively high computation cost is
required in MA2RC algorithm, especially for large arrays.

Note that even though some of the existing methods men-
tioned above show some flexibilities in array response control,
one may expect a more flexible approach which is able to adjust
the response levels at multiple points either individually or si-
multaneously, and more importantly, in a simple manner. To this
end, in this paper we devise a new algorithm named as flexible
array response control via oblique projection (FARCOP). This
algorithm stems from the adaptive array theory. More specif-
ically, we find that the optimal weight vector can be obtained
alternatively, by linearly transferring the quiescent weight. The
transformation matrix is constructed with the aid of the oblique
projection (OP) [18] operator and contains a set of parameters,
which are related to the interference-to-noise ratios (INRs) and
affect the response levels at the angles of interferences. By ex-
ploiting this concept, for an arbitrarily given weight vector, we
propose to control the array response levels of multiple angles,
by linearly transferring the pre-assigned weight and then select-
ing the parameters of the specific transformation matrix. Dif-
ferent from the existing approaches, in FARCOP, the array re-
sponses at the prescribed angles can be individually adjusted by
simply varying the modulus of parameter. To further determine
the phases of parameters, we propose to maximize the white
noise gain (WNG) [19]–[21] and obtain the ultimate solution by
using a computationally attractive gradient projection (GP) al-
gorithm [22]. Moreover, we derive closed-form solutions for the
centro-symmetric arrays [23]. In addition, comparisons between
the proposed FARCOP algorithm and the existing MA2RC algo-
rithm are summarized, and the application of FARCOP to array
pattern synthesis [24]–[26] is studied.

The rest of the paper is organized as follows. In Section II,
the oblique projection is briefly introduced. The proposed FAR-
COP algorithm is presented in Section III and its comparison
with the existing MA2RC approach is provided in Section IV. In
Section V, we discuss the application of FARCOP to pattern syn-
thesis. Representative simulations are presented in Section VI
and conclusions are drawn in Section VII.

Notations: We use bold upper-case and lower-case letters to
represent matrices and vectors, respectively. In particular, we
use I to stand for the identity matrix. j �

√−1. (·)T and (·)H
denote the transpose and Hermitian transpose, respectively. | · |
is the absolute value and ‖ · ‖2 denotes the l2 norm. We use
η(i) to represent the ith element of vector η. Diag(·) stands for
the diagonal matrix with diagonal elements equal to the input
entries. R and C denote the sets of real and complex numbers,
respectively. R(·) and N (·) return the column space and the
null space of the input matrix, respectively. R⊥(·) is the orthog-
onal complementary space of R(·). � denotes the element-wise

Fig. 1. Illustration of oblique projection.

product operator. ∠(·) returns the argument of the input. (·)†
represents the pseudo-inverse and ⊕ is the direct sum operation.
Finally, we use λmax(·) to stand for the maximum eigenvalue of
the input matrix.

II. PRELIMINARIES AND MOTIVATIONS

A. Oblique Projection

Assume that Z ∈ C
m×(p+l) has a full column rank and can be

partitioned as Z =
[
G S

]
, where G ∈ C

m×p and S ∈ C
m×l.

It is known that the orthogonal projection whose range is R(Z)
can be expressed as

PZ = Z(ZHZ)−1ZH (1)

which is termed as the orthogonal projector onto R(Z) [27].
Accordingly, the orthogonal projector whose range is R⊥(Z) is
given by P⊥

Z = I−PZ.
Projection matrix that is not orthogonal is referred to as

oblique projection (OP) [18]. Specifically, we can decompose
PZ in (1) as

PZ = P[GS] = EG|S +ES|G (2)

where EG|S and ES|G, termed as oblique projectors [18], are
given by

EG|S = [G 0](ZHZ)−1ZH = G(GHP⊥
SG)−1GHP⊥

S (3a)

ES|G = [0 S](ZHZ)−1ZH = S(SHP⊥
GS)−1SHP⊥

G. (3b)

It can be readily verified that

EG|SG = G, EG|SS = 0 (4a)

ES|GS = S, ES|GG = 0. (4b)

As illustrated in Fig. 1, the oblique projector EG|S projects
vectors onto R(G) along the direction parallel to R(S), and
likewise for ES|G. Note that oblique projectors are idempotent
but not Hermitian symmetric.

B. Adaptive Array Theory

In adaptive beamforming, the output signal-to-interference-
plus-noise ratio (SINR) is maximized and the optimal weight
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vector is given by

wopt = αR−1
n+ia(θ0) (5)

where α is the normalization factor that does not affect the out-
put SINR,Rn+i denotes theN ×N noise-plus-interference co-
variance matrix, θ0 is the main beam axis, a(θ) stands for the
steering vector at θ and is given by

a(θ) = [g1(θ)e
−jωτ1(θ), . . . , gN (θ)e−jωτN (θ)]T (6)

where N is the number of array elements, gn(θ) denotes the
pattern of the nth element, τn(θ) represents the time-delay be-
tween the nth element and the reference point, n = 1, . . . , N , ω
denotes the operating frequency.

Suppose that the noise is spatially-white and Q interferences
are independent with each other. Then, the normalized noise-
plus-interference covariance matrix is given by [19]

Ξn+i �
Rn+i

σ2
n

= I+

Q∑

q=1

βqa(θq)aH(θq) (7)

where σ2
n is the noise power, βq � σ2

q/σ
2
n, σ2

q and θq represent
the interference-to-noise ratio (INR), power and direction of the
qth interference, respectively. Consequently, the optimal weight
vector can be scaled as

w� = Ξ−1
n+ia(θ0) (8)

which corresponds to the same SINR as wopt in (5).

C. Motivations

It can be seen that in the adaptive case the optimal weight vec-
tor w� depends on the data-dependent matrix Ξn+i (or Rn+i).
However, this quantity is generally unavailable when we design
a data-independent array response pattern

L(θ, θ0) �
|wHa(θ)|2
|wHa(θ0)|2 (9)

to meet specific requirements. To this end, in [13], the concept
of virtual normalized noise-plus-interference covariance matrix
(VCM) was introduced, and it was shown that the array re-
sponses can be adjusted by assigning virtual interferences [24]
from specific directions and then selecting appropriate INRs.
However, when controlling array responses at multiple points,
the configuration of the associated INRs of the virtual interfer-
ences is somewhat difficult to handle. This is because the map-
ping of the array response at the direction of the interference to
the corresponding INR is not one-to-one, but mutually affected
by other interferences. Moreover, the existing methods of as-
signing virtual interferences cannot realize the response control
based on an arbitrarily given weight vector.

To circumvent these shortcomings, an equivalent parameteri-
zation of the optimal beamformer is presented next, by mapping
INRs into a new parameter vector whose elements are one-to-
one related to the responses at the directions of interferences.

III. THE PROPOSED FARCOP ALGORITHM

A. An Equivalent Parameterization of the Optimal Weight

To begin with, we rewrite the normalized covariance matrix
in (7) as

Ξn+i = I+A(θ1, . . . , θQ)ΣAH(θ1, . . . , θQ) (10)

where A(θi, . . . , θj) and Σ define the steering matrix and co-
variance matrix of the interferences, respectively, as

A(θi, . . . , θj) � [a(θi), . . . ,a(θj)] (11a)

Σ = Diag ([β1, β2, . . . , βQ]) . (11b)

Substituting (10) into (8) and applying the Woodbury matrix
identity [27] to Ξn+i yields

w� =
(
I+A(θ1, . . . , θQ)ΣAH(θ1, . . . , θQ)

)−1
a(θ0)

=
[
a(θ0) A(θ1, . . . , θQ)

]

︸ ︷︷ ︸
�Ă

[
1 uT

]T (12)

where Ă � A(θ0, θ1, . . . , θQ) ∈ C
N×(Q+1), and u ∈ C

Q is
given by

u = −(I+ΣAH(θ1, . . . , θQ)A(θ1, . . . , θQ)
)−1

ΣAH(θ1, . . . , θQ)a(θ0). (13)

It is found from (12) that the optimal weight vector is a lin-
ear combination of a(θ0),a(θ1), . . . ,a(θQ)with coefficients in-
cluded in u. Obviously, it is seen that we cannot simply set the
INR βq to adjust the response level at θq, while keeping the re-
sponse at the otherQ− 1 angles unaltered. The reason lies in the
fact that the response level at θq is related to all INRsβ1, . . . , βQ.
Thus, it is generally challenging to realize multi-point responses
control with the above common parameterization (in terms of
INR), as shown in the literatures [13]–[15].

Nevertheless, by introducing a new parameterization, we shall
show that it is possible to control the responses at interference
angles individually. Let us first define

v(i, j) � aH(θi)a(θj) (14)

and obtain the following proposition where the weight vector
w� in (12) are alternatively expressed.

Proposition 1: Suppose thata(θ0),a(θ1), . . . ,a(θQ) are lin-
early independent and v(q, 0) �= 0 for ∀q ∈ {1, . . . , Q}. Then,
given β1, . . . , βQ, there exist η1, . . . , ηQ such that the resulting
weight w� in (12) can be expressed with the oblique projectors
as

wOP =

(
(
I−EH

Ă0−|0

)
+

Q∑

q=1

ηqEH
q|Ăq−

)

a(θ0) = cw� (15)

where c is a constant, EĂ0−|0 and Eq|Ăq− denote the oblique
projectors as

EĂ0−|0 � EĂ0−|a(θ0) (16a)

Eq|Ăq− � Ea(θq)|Ăq− , q = 1, . . . , Q (16b)

with Ăi− being the following matrix resulted by removing the
column a(θi) from Ă, i = 0, 1, . . . , Q, i.e.,

Ăi− � A(θ0, θ1, . . . , θi−1, θi+1, . . . , θQ) ∈ C
N×Q. (17)

Proof: See Appendix A. �
An important conclusion from Proposition 1 is that the array

response of given angles can be alternatively controlled with
formula (15), by selecting the new parameters ηq rather than the
INRs βq , q = 1, . . . , Q.

To better explain the above proposition, let us consider a uni-
formly spaced linear array (ULA) of N = 10 elements spaced
by half wavelength. We fix the beam axis at θ0 = 20◦ and assume
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Fig. 2. Illustrations of Proposition 1. (a) The first case: β1 = 0.7559, β2 =
1.2226, β3 = 1.5186. (b) The second case:β1 = 0.1689, β2 = 1.2507, β3 =
1.5199.

that Q = 3 interferences impinge on the array from θ1 = −35◦,
θ2 = −20◦ and θ3 = −10◦, respectively. In the first case, the
INRs are set, respectively, as β1 = 0.7559 (−1.2155 dB), β2 =
1.2226 (0.8730 dB) and β3 = 1.5186 (1.8145 dB). The result-
ing pattern of the optimal beamformer w� is shown in Fig. 2(a),
from which we can clearly observe that all response levels at
θ1, θ2 and θ3 are −40 dB. Accordingly, if we set η1 = 0.1022,
η2 = 0.0908, η3 = 0.0747, then the obtained pattern of wOP is
completely the same as that of w�, as shown in Fig. 2(a). In
fact, it can be verified that wOP = cw� with c = 1.0412. The
rationality of Proposition 1 can thus be demonstrated by this
example.

In order to draw forth the important result of Proposition 1,
we change the INRs to β1 = 0.1689 (−7.7238 dB), β2 =
1.2507 (0.9717 dB) and β3 = 1.5199 (1.8182 dB). In this case,
the responses at θ1, θ2 and θ3 are −30 dB, −40 dB and −40 dB,
respectively, as shown by the resulting pattern of the optimal
weight vector w� in Fig. 2(b). It can be noticed that, compared
with the first case, all three INRs have been changed, although
we only adjust the response level at θ1 from −40 dB to −30 dB
while retaining the responses at θ2 and θ3. As a matter of fact, in
this case we have η1 = 0.3231, η2 = 0.0908, and η3 = 0.0747

such that wOP = cw� with c = 1.0394 (details of the determi-
nation of these parameters will be discussed in the following
two subsections). An interesting and important observation is
that the parameters η2 and η3 are unchanged comparing to the
first case. It appears that the response at θ1 is only affected by
η1 and unrelated to η2 and η3. Moreover, the adjustment of the
response level at θ1 does not cause response variations at θ2
and θ3. In fact, these results are not occasional, but theoretically
provable as shown in the sequel.

B. The FARCOP Algorithm

In the preceding subsection, a new equivalent parameteriza-
tion of the optimal beamformer in terms of {η1, . . . , ηQ} has
been presented with the aid of OP operator, and numerical ex-
amples are given to verify the equivalence. In this section, the
FARCOP algorithm is introduced by extending the parameteri-
zation to general cases, rather than the optimal beamformer.

For the sake of notational simplicity, we first define

Ψ(η) �
(
I−EH

Ă0−|0

)
+

Q∑

q=1

ηqEH
q|Ăq−

(18)

where the subscript η is defined as

η � [1, η1, η2, . . . , ηQ]T ∈ C
Q+1. (19)

Hence, we have

wOP = Ψ(η)a(θ0) (20)

from which it is seen that a weight vector (wOP or w�) which
can adjust the response as desired at interference angles (i.e.,
θ1, . . . , θQ), can be obtained by performing a linear transfor-
mation of the quiescent weight vector a(θ0). Now, what we are
interested in is: 1) whether such transformation can be extended
to a general case, i.e., adjust the response levels at certain angles
of a (arbitrarily) given weight vector by using the transforma-
tion, and 2) whether we can retain the response levels at some
angles while adjusting the response(s) at other angle(s).

The expression (20) provides us a new insight into the array
response control of multiple points. It indicates that the response
levels at specific angles can be adjusted by carrying out a linear
transformation on the given weight vector, which is taken as w0

in the above discussion. On the basis of (20), we next present
the FARCOP algorithm, in which the array response can be con-
trolled from any given weight vector wpre, i.e., not necessarily
be w0.

More specifically, for a given wpre, we propose to find a
new weight vector wnew that is able to adjust the responses
at θ1, θ2, . . . , θQ to be ρ1, ρ2, . . . , ρQ, respectively. To make
the discussion meaningful, we assume that wH

prea(θi) �= 0, i =
0, 1, . . . , Q. In the proposed FARCOP algorithm, we conduct a
linear transformation to wpre and obtain the new weight vector
wnew by

wnew = Ψ(η)wpre (21)

where the transformation matrix Ψ(η) is given in (18), and ηq,
q = 1, . . . , Q, needs to be determined according to the response
control specification.
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To see the merits of (21), we recall the property of OP and
obtain that

Eq|Ăq−a(θ0) = 0, q = 1, . . . , Q (22)

EĂ0−|0a(θ0) = 0. (23)

Then, the new weight vector wnew in (21) satisfies

wH
newa(θ0) = wH

preΨ
H(η)a(θ0)

= wH
pre

(
(
I−EĂ0−|0

)
+

Q∑

q=1

η∗qEq|Ăq−

)

a(θ0)

= wH
prea(θ0). (24)

In other words, the array response output, i.e., wHa(θ), keeps
unaltered at θ0, after carrying out the linear transformation oper-
ator, see Eqn. (21), to the previous weight wpre. This facilitates
the realization of array response control.

More importantly, for the given i and q satisfying i, q =
1, 2 . . . , Q, one can see that

Ei|Ăi−a(θq) =

{
a(θq), if i = q

0, if i �= q
(25)

and (
I−EĂ0−|0

)
a(θq) = 0, ∀q = 1, . . . , Q. (26)

Therefore, the weight vector wnew in (21) satisfies

wH
newa(θq) = wH

preΨ
H(η)a(θq)

= wH
pre

(
(
I−EĂ0−|0

)
+

Q∑

i=1

η∗iEi|Ăi−

)

a(θq)

= η∗qwH
prea(θq), q = 1, . . . , Q. (27)

From (27), we know that wH
newa(θq) is a simple scaling of the

previous wH
prea(θq) with scaling factor η∗q , q = 1, . . . , Q.

Combining the results of (24) and (27), we obtain that

Lnew(θq, θ0) =
|wH

newa(θq)|2
|wH

newa(θ0)|2
= |η∗q|2

|wH
prea(θq)|2

|wH
prea(θ0)|2

= |ηq|2 · Lpre(θq, θ0), q = 1, . . . , Q. (28)

where Lpre(θ, θ0) denotes the array response pattern of wpre.
Clearly, Eqn. (28) indicates that if the weight vector wpre is
transformed by Ψ(η), then the response level at θq will be am-
plified by |ηq|2. As a result, if we wish to adjust the response at
θq to be

Lnew(θq, θ0) = ρq, q = 1, . . . , Q (29)

then we only need to simply select ηq as

|ηq| =
√

ρq
Lpre(θq, θ0)

, q = 1, . . . , Q. (30)

Obviously, if we wish to keep the response level at θp unaltered
after applying the transformation as (21), then ηq should be set
as unitary amplitude, i.e., |ηq| = 1. In addition, to make sure
that a(θ0),a(θ1), . . . ,a(θQ) are linearly independent, one can
easily find that at most N − 1 points can be controlled.

For illustration, we again use a 10-element ULA with half
wavelength space to demonstrate the above results, by steer-
ing the beam to θ0 = 20◦ and taking the three controlled points

Fig. 3. Illustrations of array response control initialized by a Chebyshev
weight (the green lines represent the previous patterns corresponding to the
given Chebyshev weights). (a) The first scenario: the blue solid line is obtained
by taking η1 = 0.1851, η2 = 0.1798, η3 = 0.1859, the red dash line is ob-
tained by takingη1 = 0.1851ejπ ,η2 = 0.1798ejπ/3,η3 = 0.1859ejπ/4. (b)
The second scenario: the blue solid line is obtained by taking η1 = 0.5854,
η2 = 0.1798, η3 = 0.1859, the red dash line is obtained by taking η1 =

0.5854ejπ/2, η2 = 0.1798ejπ/3, η3 = 0.1859ejπ/4.

as θ1 = −35◦, θ2 = −20◦ and θ3 = −10◦. In this example, the
previous weight wpre is taken as the Chebyshev weight vector
with a −25 dB of sidelobe attenuation. In the first scenario, the
desired levels of the controlled angles are set to be all −40 dB.
According to (30), it can be readily obtained that |η1| = 0.1851,
|η2| = 0.1798 and |η3| = 0.1859. Since the phases of η’s can
be arbitrarily set, two selections of {η1, η2, η3} are considered.
More precisely, Fig. 3(a) shows the resulting patterns of two
realizations, by taking η1 = 0.1851, η2 = 0.1798, η3 = 0.1859
(corresponds to the blue solid line) and η1 = 0.1851ejπ , η2 =
0.1798ejπ/3, η3 = 0.1859ejπ/4 (corresponds to the red dash
line), respectively. Clearly, it is seen that these two selections
of {η1, η2, η3} can result in identical responses at {θ1, θ2, θ3},
but the responses at other uncontrolled angles may be (signifi-
cantly) different.

In the second scenario, the desired level of θ1, i.e., ρ1, is
changed to be −30 dB, with all other settings staying unaltered
as the first scenario. Comparing to the previous scenario, it can
be computed that |η1| = 0.5854, while both |η2| and |η3| keep



ZHANG et al.: FLEXIBLE ARRAY RESPONSE CONTROL VIA OBLIQUE PROJECTION 3131

unchanged. Following the two sets of parameter selection on η2
and η3 in the first scenario, we examine η1 = 0.5854 and η1 =
0.5854ejπ/2, and plot the two resulting patterns in Fig. 3(b). One
can see from Fig. 3(b) that the response control task has been
fulfilled for the both sets of ηq, q = 1, 2, 3, but the resulting two
patterns are not identical.

From the above discussion and simulation tests, a critical ob-
servation can be obtained is that the array responses at θq’s can
be readily and separately adjusted, by tuning the corresponding
|ηq|’s by (30), if some of the desired levels at θq’s, q = 1, . . . , Q,
are changed. Moreover, the phase of ηq affects the pattern shape
of the uncontrolled angles, although it does not affect the re-
sponse level at θq , i.e., Lnew(θq, θ0). For this reason, a more
appropriate selection of the phase angles of ηq , q = 1, . . . , Q, is
developed under certain criterion to achieve a desired beampat-
tern, as discussed in the next subsection.

C. Selection of η With Beampattern Consideration

In this subsection, we shall discuss how to select the param-
eter vector η under the consideration of beampattern, when we
need to adjust the array responses at θ1, θ2, . . . , θQ to their de-
sired levels ρ1, ρ2, . . . , ρQ, respectively, for a given weight vec-
tor wpre and its corresponding array response Lpre(θ, θ0). From
the previous analysis, it is clear that we can formulate the desired
weight as wnew = Ψ(η)wpre and realize the response control
task by selecting a proper η. We define a vector r for later use
as

r � [r0, r1, . . . , rQ]
T (31)

where r0 = 1 and rq � |ηq| for q = 1, . . . , Q.
As mentioned earlier, the modulus of ηq , i.e., |ηq|, can be read-

ily obtained from (30), what remains is the determination of the
phase angles of ηq, q = 1, . . . , Q, which affect the shape of the
resulting pattern at the uncontrolled region. Basically, how to
optimize the vector η relies on specific considerations and ap-
plications. We next optimize η to maximize the white noise gain
(WNG) [19]–[21], which is commonly used to measure the per-
formance of a weight vector or its beampattern. For other kinds
of object functions, similar procedures can be straightforwardly
applied.

To proceed, we denote by G the WNG as

G =
|wHa(θ0)|2

wHw
. (32)

Therefore, given wpre, θq and ρq , q = 1, . . . , Q, the following
constrained optimization problem is formulated:

maximize
wnew,η

|wH
newa(θ0)|2

wH
newwnew

(33a)

subject to Lnew(θq, θ0) = ρq, q = 1, . . . , Q (33b)

wnew = Ψ(η)wpre (33c)

eT1 η = 1 (33d)

where e1 is a (Q+ 1)× 1 vector with its first entry equal to
1 and 0 elsewhere. Recalling (24), |wH

newa(θ0)|2 is a constant
if wnew = Ψ(η)wpre. Moreover, note that wnew = Ψ(η)wpre

can be reshaped as

wnew = Bη (34)

where B is given by

B=
[(
I−EH

Ă0−|0

)
wpre,EH

1|Ă1−
wpre, . . . ,EH

Q|ĂQ−
wpre

]
(35)

and the constraint (33b) can be replaced by |ηq| = rq , q =
1, . . . , Q. Thus, the problem (33) can be recast as

minimize
η

ηHBHBη (36a)

subject to η(1) = 1 (36b)

|η(q + 1)| = rq, q = 1, . . . , Q. (36c)

Rather than solving the problem (36), we first consider the
following problem

minimize
y

yHBHBy (37a)

subject to |y(i+ 1)| = ri, i = 0, 1, . . . , Q. (37b)

Notice that in (37), we have replaced y(1) = 1 by a stronger
constraint |y(1)| = 1. Assume that y� is the optimal solution to
(37), then the optimal solution to (36) is given by

η� = y�/y�(1). (38)

Accordingly, the ultimate selection of the weight vector of the
problem (33) can be expressed as

wnew,� = Bη� = By�/y�(1). (39)

However, problem (37) is non-convex due to its constant-
modulus constraints in (37b). Several solvers have been pro-
posed to find the globally optimal solution of problem (37),
which is NP-hard. For example, the SDR approach in [4] carries
out a convex relaxation operator and obtains the ultimate solution
by randomization. Nevertheless, this method has a high compu-
tational complexity and its optimality may not be well guar-
anteed. In [28], a monotonically error-bound improving tech-
nique (MERIT) and a power method-like iteration are devised for
the quadratic optimization problem with constant-modulus con-
straints. As mentioned in [22], MERIT provides a sub-optimality
guarantee that is sometimes tighter than that provided by SDR.
The power-like iteration in [28] can be used to improve any
initial estimate at a relatively low (second-order) cost, but the
ultimate result depends a lot on initialization. To tackle the non-
convex problem (37), we next adopt the gradient projection (GP)
method. The computational complexity of GP is attractive. More
importantly, its convergence property can be well-guaranteed for
the original NP-hard problem (37).

GP or projected gradient descent method is a modified ver-
sion of the conventional gradient descent method. It has been
recently applied to solve unit-modulus least squares problems
[22]. Following [22], the detailed procedure of GP method to
solve problem (37) is given in Algorithm 1, where ε acts as
the step size along the opposite direction of the gradient. No-
tice that, Algorithm 1 contains a similar procedure (3rd line) as
the gradient descent method, with an additional step (4th line)
conducting a projection onto a non-convex feasible set. In par-
ticular, the projection onto a constant modulus constraint admits
a closed-form solution, and the entire procedure can be carried
out very efficiently. In fact, the GP method reduces the objective
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Algorithm 1: GP Method to Solve Problem (37).

1: j = 0, δ ∈ (0, 1), y0 = r and ε = δ

λmax(BHB)

2: while not convergence do
3: obtain ν as ν=yj−ε·BHByj −−−−−(Gradient)
4: update y as yj+1=r�ej∠ν−−−−−−(Projection)
5: set j = j + 1
6: end while
7: output y� = yj

at each iteration step. Moreover, authors of [22] have obtained
the following convergence properties about the GP method in
Algorithm 1:
� (Global Convergence) The solution sequence {yj} con-

verges to a set K which consists of all the Karush-Kuhn-
Tucker (KKT) points of problem (37).

� (Iteration Complexity) The Algorithm 1 converges to a
KKT point at least sub-linearly.

Therefore, the solution sequence of GP algorithm converges
to a meaningful point with attractive computational complexity.

Remark 1: If wpre and a(θi), i = 0, 1, . . . , Q, are conjugate
centro-symmetric vectors [23], it can be verified that BHB is a
(real) symmetric matrix, by utilizing the fact that the inner prod-
uct of two conjugate centro-symmetric vectors returns a real
number (details are omitted due to space limitation). Then, the
solution of problem (36) should be a real vector. In fact, under the
above situation, we can see that theν in Algorithm 1 maintains to
be a real vector ify0 = r is taken. Moreover, extensive examples
show that the intermediate yj+1 in Algorithm 1 always equals
to r (although it is challenging to theoretically prove), provided
thaty0 = r and δ ∈ (0, 1). This is because I− ε ·BHB approx-
imates to be a diagonal matrix with positive diagonal elements if
δ ∈ (0, 1). Then, the signs of elements in ν are the same as that
in yj . Consequently, for the conjugate centro-symmetric wpre

and a(θi), i = 0, 1, . . . , Q, we can set η� as

η� = r. (40)

Moreover, under the same conditions, it is not difficult to verify
that wnew,� = Bη� is also conjugate centro-symmetric, which
greatly facilitates the iteration of FARCOP algorithm if needed.
Note that for centro-symmetric arrays, e.g., ULA, the steering
vectors are conjugate centro-symmetric. In addition, it is inter-
esting to note that the selection of η� in (40) also coincides with
the results obtained in Fig. 2, where the resulting η’s are all
positive real values.

Remark 2: In the above discussions, the angles where re-
sponses need to be adjusted are known exactly. In fact, our algo-
rithm can be readily extended to the case that the corresponding
directions are not precisely known. This allows us to, for exam-
ple, suppress interferences with inaccurate or rough orientations.
In this scenario, we can replace the steering vector a(θq) by the
new vector vq , q = 1, . . . , Q, in the construction of oblique pro-
jectors. The vector vq can be selected as the qth (q = 1, . . . , Q)
principal eigenvector of the following matrix R:

R =

∫

Ω

a(θ)aH(θ)dθ (41)

Algorithm 2: FARCOP Algorithm.

1: give θ0, wpre, Lpre(θ, θ0), θq and ρq , q = 1, 2, . . . , Q
2: obtain B from (35)
3: calculate rq from (30) and then obtain r in (31)
4: if a centro-symmetric array is applied and wpre has a

conjugate centro-symmetric structure, set η� by (40)
directly, otherwise, solve problem (37) by GP
algorithm (see Algorithm 1), and then obtain the
optimal η� by (38)

5: obtain wnew,� by (39) and calculate its corresponding
response pattern Lnew(θ, θ0)

where Ω represents the possible angle sectors of interferences,
and the calculation of R can be approximated by a finite sum-
mation if no closed-form expression is available for the integra-
tion. Since vq’s have extracted the principal components of R,
we can apply FARCOP to shape broad nulls at the angle sector
Ω, by simply replacing a(θq) with vq and then setting ηq,� = 0,
q = 1, . . . , Q. Note that in this case, the specific value of Q may
be obtained after the calculation of R in (41).

Once the ultimate weight vectorwnew,� in (39) is obtained, the
proposed array response control via oblique projection (FAR-
COP) algorithm is completed. To summarize, we detail the steps
of FARCOP in Algorithm 2.

D. Computational Complexity

In this part, we analyze the computational complexity of the
proposed FARCOP algorithm. For centro-symmetric arrays, the
main computation lies in the calculations of oblique projec-
tors, i.e., EĂ0−|0 and Eq|Ăq− ’s, q = 1, . . . , Q. For each oblique

projector, the computational complexity is O(N3). Therefore,
the computational complexity of FARCOP is O(N3) in this
case. For the general arrays, an additional implementation of
GP method is required. From the description of GP method in
Algorithm 1, it has a low per-iteration computational complex-
ity with O(N), whose order is lower than that of the calculation
of oblique projector. Consequently, the computation complex-
ity of the proposed FARCOP algorithm is O(N3) for both the
centro-symmetric arrays and the general ones.

IV. COMPARISONS OF MA2RC AND FARCOP

The MA2RC algorithm [17] is able to precisely adjust array
responses at multiple points, from any given weight wpre. In
MA2RC, the weight vector is updated as

w̃new = Z1

[
(−F†b+ fn)T, 1

]T
, ∀fn ∈ N (F) (42)

where F and b are given by

F =

⎡

⎢
⎢
⎢
⎢
⎣

P⊥
Z2

U1,2

P⊥
Z3
U1,2

...
P⊥

ZQ
U1,2

⎤

⎥
⎥
⎥
⎥
⎦
, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P⊥
Z2

w1

P⊥
Z3
w1

...

P⊥
ZQ

w1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(43)
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and

Zq =
[
Uq,2 wq

]
, q = 1, . . . , Q (44)

where wq is obtained via A2RC [15] as wq = wpre + μqa(θq)
with μq determined by ρq . Uq,2 is a submatrix of Uq as

Uq =
[
u1 u2︸ ︷︷ ︸
Uq,1

u3 . . . uN︸ ︷︷ ︸
Uq,2

]
(45)

which consists of the left singular vectors of [a(θ0), a(θq)] and
can be determined through singular value decomposition (SVD)
as [a(θ0), a(θq)] = UqΣqVH

q . Then, we can expand the weight
w̃new of MA2RC as

w̃new =
[
U1,2 w1

] [
(−F†b+ fn)T, 1

]T

= U1,2(−F†b+ fn) +wpre + μ1a(θ1)

= wpre +
[
U1,2 a(θ1)

] [
(−F†b+ fn)T, μ1

]T
︸ ︷︷ ︸

� ˜Δ

(46)

where Δ̃ denotes the added component to wpre.
For the proposed FARCOP algorithm, we follow the deriva-

tions of (63) and (64) in Appendix A and obtain that

EH
q|Ăq−

wpre = ξq(I−PĂq−)a(θq)a
H(θq)wpre

= ξqaH(θq)wpreĂhq, q = 1, . . . , Q (47)

(I−EH
Ă0−|0)wpre = (I−PH

Ă
+EH

0|Ă0
)wpre

= P⊥
Ă
wpre + ξ0aH(θ0)wpreĂh0 (48)

where both ξi and hi, i = 0, 1, . . . , Q, have been specified in
Appendix A, see the definitions of (55), (62), (66) and (67) for
details. Then, it is not hard to rewrite the wnew in (21) as

wnew = Ψ(η)wpre = P⊥
Ă
wpre + ĂHΛpreη (49)

where H is given in (70) in Appendix A, Λpre ∈ C
(Q+1)×(Q+1)

is a generalization of Λ0 in (71) and can be detailed as

Λpre = Diag
(
[ξ0aH(θ0)wpre, . . . , ξQaH(θQ)wpre]

)
. (50)

From (49), one can further expand the resulting wnew of the
proposed FARCOP algorithm as

wnew = P⊥
Ă
wpre + ĂHΛpreη

= (I−PĂ)wpre + ĂHΛpreη

= wpre + Ă
(
HΛpreη − (ĂHĂ)−1ĂHwpre

)

︸ ︷︷ ︸
�Δ

(51)

where Δ stands for the appended component.
From (46) and (51), it is not difficult to find that

Δ̃ ∈ [R⊥([a(θ0), a(θ1)])⊕R(a(θ1))
]

(52a)

Δ ∈ R(Ă) (52b)

which indicates that the modified quantities of the resulting
weights (compared to the previous wpre) locate in two different
sets, for MA2RC and FARCOP. Note that we haveP⊥

Ă
Δ = 0 for

FARCOP, while this may be not true for MA2RC. Since the com-
ponent in R⊥(Ă) does not affect the responses of the controlled

points, one can see that no redundant component (i.e., compo-
nent inR⊥(Ă)) is added in FARCOP to the givenwpre. The ben-
efit may be the less pattern variations outside θi, i = 0, 1, . . . , Q.

Besides the above difference, for a given set of angles to be
controlled, MA2RC needs to re-calculate its weight if any of the
desired levels changes. While for FARCOP, the manipulation is
fairly simple since the re-calculation of B is unnecessary in this
case. Moreover, notice from (43) that the matrix F in MA2RC
has a high dimension on its row. Thus, the computation of F†

is computationally inefficient especially for a large array. In ad-
dition, the vector fn in MA2RC is optimized to obtain a less
pattern variation. While for the proposed FARCOP algorithm,
the parameter vector η is designed to maximize the WNG.

In brief, the main differences between the proposed FARCOP
algorithm and the existing MA2RC algorithm include:
� Two different manners of weight vector update are adopted

in FARCOP and MA2RC.
� FARCOP can adjust the response at a certain angle by

changing the associated parameter η only, while MA2RC
needs to re-conduct all calculations.

� FARCOP is computationally more attractive. More specif-
ically, the computation complexity of FARCOP is O(N3),
while the computational complexity of MA2RC is
O(QN3).

� FARCOP takes WNG into account for parameter optimiza-
tion, while MA2RC does not.

V. PATTERN SYNTHESIS VIA FARCOP

In this section, the application of the FARCOP algorithm to
pattern synthesis is briefly introduced. Generally speaking, the
strategy herein shares a similar concept of pattern synthesis us-
ing MA2RC [17] or multi-point OPARC [14], however, with
improved flexibility and computational efficiency.

More specifically, we first specify an initial weight vectorw0,
and set the iteration index as k = 1. Multiple angles are deter-
mined according to Lk−1(θ, θ0) (standing for the array response
pattern of wk−1), and the desired pattern, denoted as Ld(θ).
Following the angle selection strategy in [14], for sidelobe syn-
thesis, we select Qk (Qk ≤ N − 1) peak angles where the re-
sponse differences (from the desired levels) are relatively large.
For mainlobe synthesis, we choose few discrete angles where
the responses result significant deviations from the desired val-
ues. Once those angles are picked out, the FARCOP algorithm
is utilized to find the weight wk by adjusting the corresponding
responses to their desired values. Then, we set k = k + 1 and
repeat the above procedure until the response pattern is satisfac-
torily synthesized.

Note that at most N − 1 points can be selected and controlled
in each step, and the number of the selected angles (denoted
as Qk) can be different in each step. Moreover, following [14],
we can further reduce the computation cost by decreasing the
number of the controlled angles, which facilitates the pattern
synthesis for large arrays as shown in simulations later. Finally,
we summarize the FARCOP based pattern synthesis algorithm
in Algorithm 3.
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Algorithm 3: FARCOP Based Pattern Synthesis Algorithm.

1: give θ0, the desired pattern Ld(θ), the initial weight
vector w0 and its corresponding response pattern
L0(θ, θ0), set k = 1

2: while 1 do
3: select Qk angles by comparing Lk−1(θ, θ0) with

Ld(θ)
4: apply FARCOP (see Algorithm 2) to realize

Lk(θq, θ0) = Ld(θq), q = 1, . . . , Qk, obtain wk

and the corresponding Lk(θ, θ0)
5: if Lk(θ, θ0) is not satisfactory then
6: set k = k + 1
7: else
8: break
9: end if

10: end while
11: output wk and Lk(θ, θ0)

VI. NUMERICAL RESULTS

In this section, simulations are presented to demonstrate FAR-
COP and its application to array pattern synthesis. Unless oth-
erwise specified, we take fn as a zero vector for MA2RC.

A. Illustration of FARCOP Algorithm

1) Precise Array Response Control Based on the Taylor
Weight Vector: In this part, a linearly half-wavelength-spaced
array with N = 16 isotropic elements is considered. We steer
the beam to θ0 = −45◦ and set wpre as the Taylor weight vector
with a −20 dB of sidelobe attenuation. In this scenario, both
a(θ) and wpre are conjugate centro-symmetric vectors. We op-
timize the parameter vector of FARCOP via GP algorithm and
compare the result with MA2RC in [17].

In the first case, three angles, i.e., θ1 = −10◦, θ2 = 5◦ and
θ3 = 60◦, are expected to be all −40 dB. Fig. 4(a) depicts the
results of the two algorithms. One can see that the response levels
of the prescribed points have been precisely controlled to their
desired values for both algorithms, with slight pattern variations
(comparing to the initial pattern) at the uncontrolled regions. For
the proposed FARCOP algorithm, we obtain that η1,� = r1 =
0.2051, η2,� = r2 = 0.2205 and η3,� = r3 = 0.1242, which is
consistent with the results in Remark 1. Interestingly, the result-
ing beampatterns of FARCOP and MA2RC are almost coincide
in this case.

To make a further comparison, we keep the initial weight
and the controlled points the same as the previous example, and
carry out the second case by simply setting the desired levels as
ρ1 = −40 dB, ρ2 = −40 dB and ρ3 = 0 dB, respectively. Note
that both ρ1 and ρ2 are still the same as the previous case. The
obtained patterns are displayed in Fig. 4(b), where we can see
that both the two tested algorithms complete the given response
control task. The resulting parameters are η1,� = r1 = 0.2051,
η2,� = r2 = 0.2205 and η3,� = r3 = 12.4240, which coincides
with the conclusion drawn in Remark 1. More importantly, only
η3,� has varied comparing to the first case. This shows that the

Fig. 4. Illustration of FARCOP on array response control. (a) The first case.
(b) The second case.

TABLE I
ANGLE SETTING AND THE RESULTING PARAMETERS WHEN CONTROLLING

ARRAY RESPONSES FROM THE TAYLOR WEIGHT VECTOR

array response levels can be flexibly and individually adjusted
by the proposed FARCOP algorithm. From Fig. 4(b), we can see
that the resulting mainlobes of the MA2RC method are wider
than those of FARCOP. Moreover, FARCOP results in a WNG
of 9.3014 dB, which is higher than the corresponding 8.5086 dB
for MA2RC.

To show that the FARCOP algorithm works well for an in-
creased number of controlled points, we take Q = N − 1 = 15
by adding new angles as specified in Table I, and set the de-
sired level as −40 dB for all the angles to be controlled. Fig. 5
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Fig. 5. Illustration of FARCOP on array response control for an increased
number of controlled points.

Fig. 6. Illustration of FARCOP on shaping broad nulls.

presents the resulting patterns and Table I lists the obtained pa-
rameters. Observe from Fig. 5 that the proposed algorithm has
adjusted the response levels as desired. In addition, one can see
from Table I that ηq,� = rq (q = 1, . . . , Q), which follows the
conclusion drawn in Remark 1. Thus, the advantage of the pro-
posed FARCOP algorithm can be verified.

2) Shaping Broad Nulls Based on the Hamming Weight
Vector: To validate that the proposed FARCOP algorithm is ef-
fective for an arbitrarily specified given weight vector, we con-
sider the linearly half-wavelength-spaced array with N = 16
isotropic elements and setwpre = a(θ0)�wh, where θ0 = 15◦

is the main beam axis and wh represents the 16-point Hamming
window. Different from the previous example where the con-
trolled points are precisely prescribed, in this test we consider in-
terferences with rough directions. More specifically, all the pos-
sible interferences are assumed to locate in the sector Ω = [θ1 −
2◦, θ1 + 2◦] ∪ [θ2 − 2◦, θ2 + 2◦] with θ1 = −30◦ and θ2 = 45◦.
It is expected to form broad nulls at Ω with slight pattern
variations (comparing to the beampattern of wpre) outside Ω.
Following Remark 2, we take Q = 6 in this scenario and ob-
tain the ultimate pattern of FARCOP as depicted in Fig. 6.

One can observe that the FARCOP algorithm results desir-
able beampattern with two deep broad nulls at Ω, while the
MA2RC method simply shapes two narrow nulls at θ1 and θ2,
respectively.

B. Pattern Synthesis Using FARCOP

In this section, representative simulations are presented to
illustrate the application of the proposed FARCOP algorithm
to array pattern synthesis. Various approaches, including the
convex programming (CP) method [25], the A2RC method [15],
the MA2RC method [17] and the multiple-point OPARC method
[14], are compared.

1) Nonuniform Sidelobe Synthesis for a Large ULA: In this
example, pattern synthesis for a large linearly half-wavelength-
spaced array with N = 100 isotropic elements is considered.
The desired pattern steers to θ0 = 60◦ with a nonuniform side-
lobe level. More specifically, the upper level is −45 dB in the
sidelobe region [−20◦, 30◦] and −35 dB in the rest of the side-
lobe region. Clearly, the desired pattern is similar to the Cheby-
shev pattern with a−35 dB uniform sidelobe. For this reason, we
take the initial weight of the FARCOP algorithm as the Cheby-
shev weight with a −35 dB of sidelobe attenuation, in the hope
that the synthesis procedure can be simplified.

In this scenario, we select Qk = 41 sidelobe peak angles in
each step and then adjust their response levels to the desired ones
by using the FARCOP algorithm. Since Q � N , the calculation
in each step is greatly reduced. Moreover, the array considered
in this case is centro-symmetric and the initial weight vector has
a conjugate centro-symmetric structure. Following the analysis
in Remark 1, in each step of response control we take the op-
timal parameter vector η� by (40) and obtain a weight vector
having a closed-form expression. Thus, the computation com-
plexity of the proposed algorithm is further reduced. Several
intermediate results are presented in Fig. 7, from which one can
see that only k = 9 steps are required to synthesize a satisfactory
beampattern.

To have fairer comparisons, the same number of the iterations
steps, i.e., k = 9 steps, is taken when conducting the MA2RC
method [17] and the multi-point OPARC method [14]. The num-
ber of the selected angles in each step is also set as Qk = 41 for
these two approaches. From the resulting sidelobe in Fig. 8, it is
seen that the pattern envelope of the CP method is not aligned
with the desired one, since it cannot exactly control the beam-
pattern according to the required specifications. A careful ob-
servation shows that the A2RC method (after carrying out 300
iteration steps) is outperformed by the MA2RC and the FAR-
COP algorithms, both of which perform equally well. The ob-
tained sidelobe of the multi-point OPARC algorithm is higher
than the desired level at certain angles. This is mainly because
that the multi-point OPARC algorithm is initialized by the qui-
escent pattern, rather than the Chebyshev pattern that is closer
to the desired one. Thus, it may require more iteration steps for
multi-point OPARC to synthesize a desirable beampattern.

To further assess the performance, some measurements of
various algorithms are listed in Table II, where T represents the
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Fig. 7. Resultant patterns at different steps when carrying out a nonuniform sidelobe synthesis for a nonuniform linear array. (a) Synthesized pattern at the 1st
step. (b) Synthesized pattern at the 2nd step. (c) Synthesized pattern at the 9th step.

Fig. 8. Synthesized patterns for a large ULA.

TABLE II
MEASUREMENT COMPARISON WHEN CONDUCTING PATTERN

SYNTHESIS FOR A LARGE ULA

execute time, G measures the resulting WNG. From Table II,
one can see that the MA2RC method and the CP method take
long time to complete the synthesis task. In contrast, if the pro-
posed FARCOP algorithm adopted, it converges the fastest, and
meanwhile, performs well in WNG.

2) Uniform Sidelobe Synthesis for a Nonisotropic Random
Array: In this example, a 21-element nonisotropic linear random
array, see e.g., [11] and [15], is considered. The pattern of the
nth element is given by

gn(θ) = [cos (πlnsin(θ + ζn))− cos(πln)] /cos(θ + ζn) (53)

where ζn and ln represent the orientation and length of the el-
ement, respectively. More details of the array can be found in
Table III, where the element positions (in wavelength) are also
specified. The beam axis is θ0 = 20◦ and the desired pattern
has a −25 dB uniform sidelobe. Taking the quiescent weight

TABLE III
PARAMETERS OF THE NONISOTROPIC RANDOM ARRAY AND THE OBTAINED

WEIGHTINGS BY FARCOP ALGORITHM

vector a(θ0) as the initial one and implementing k = 30 synthe-
sis steps, a satisfactory pattern is obtained by FARCOP and the
corresponding weightings are listed in Table III.

The resulting beampatterns are depicted in Fig. 9. It is clearly
seen that both the A2RC algorithm (with 200 iteration steps) and
the multi-point OPARC algorithm (with the same step number
as FARCOP) produce responses that are higher than the desired
values at certain sectors, see e.g., the region [−5◦, 10◦]. It may
require more synthesis steps for these two methods to achieve
satisfactory beampatterns. The CP method leads to a pattern with
sidelobe much lower than the prescribed value. For the proposed
FARCOP based pattern synthesis algorithm, Fig. 9 shows that
its envelope of the synthesized pattern is aligned with the de-
sired one. Moreover, it takes shorter time than MA2RC (with
the same step number as FARCOP) to synthesize a satisfactory
beampattern.
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Fig. 9. Synthesized patterns with uniform sidelobe for a nonisotropic array.

VII. CONCLUSIONS

In this paper, we have presented an algorithm of flexible array
response control via oblique projection (FARCOP). The pro-
posed algorithm stems from the adaptive array theory, and is
able to flexibly, precisely and simultaneously adjust the array
response levels at multiple angles based on an arbitrarily given
weight vector. In FARCOP, the parameters are independent of
each other, and the response levels at the control angles can be
either individually or jointly adjusted. We have also considered
the optimization of white noise gain (WNG) by using the gradi-
ent projection (GP) algorithm to determine the parameters, and
have derived a closed-form solution for the centro-symmetric ar-
ray. In addition, we have discussed the application of FARCOP
to array pattern synthesis. Representative simulations have been
presented to verify the effectiveness and superiority of FARCOP
under various scenarios.

APPENDIX A
PROOF OF PROPOSITION 1

Suppose that Q ≤ N − 1 (otherwise, a(θ0), . . . ,a(θQ) are
linearly dependent), then the following five steps are required in
the derivation of Proposition 1.

Step 1: In the first step, EH
q|Ăq−

a(θ0), q = 1, . . . , Q, are sim-

plified. Recalling (3), we have

Eq|Ăq− = a(θq)(aH(θq)P
⊥
Ăq−

a(θq))
−1aH(θq)P

⊥
Ăq−

= ξqa(θq)aH(θq)(I−PĂq−) (54)

where

ξq = (aH(θq)P
⊥
Ăq−

a(θq))
−1 ∈ R (55)

PĂq− = Ăq−(ĂH
q−Ăq−)−1ĂH

q−. (56)

From (54), we have

EH
q|Ăq−

a(θ0) = ξq(I−PĂq−)a(θq)a
H(θq)a(θ0)

= ξq · v(q, 0) · [a(θq)−PĂq−a(θq)]

= [a(θq), Ăq−]dq (57)

where

dq = ξq · v(q, 0)
[

1

−(ĂH
q−Ăq−)−1ĂH

q−a(θq)

]

∈ C
Q+1. (58)

One can see that [
a(θq), Ăq−

]
= ĂJq (59)

where Jq is a permutation matrix as

Jq =

⎡

⎢
⎣

Iq

1

IQ−q

⎤

⎥
⎦ ∈ R

(Q+1)×(Q+1). (60)

Moreover, we have

Jqdq = ξq · v(q, 0)hq (61)

where

hq = [c
(q)
1 , . . . , c(q)q , 1, c

(q)
q+1, . . . , c

(q)
Q ]T ∈ C

Q+1 (62)

with the notation c
(q)
i standing for the ith element of the vector

−(ĂH
q−Ăq−)−1ĂH

q−a(θq), i = 1, . . . , Q.
Combining (57), (59) and (61), we can further simplify

EH
q|Ăq−

a(θ0) as

EH
q|Ăq−

a(θ0) = ĂJqdq = ξq · v(q, 0)Ăhq. (63)

Step 2: In this step, we attempt to make a simplification for(
I−EH

Ă0−|0
)
a(θ0). Since EĂ0−|0 +E0|Ă0− = PĂ, we have

(
I−EH

Ă0−|0
)
a(θ0) =

(
I−PH

Ă
+EH

0|Ă0−

)
a(θ0)

= EH
0|Ă0−

a(θ0) (64)

where the equality PH
Ă
a(θ0) = a(θ0) has been used. Recalling

the result of (63) in Step 1, we can similarly obtain that

EH
0|Ă0−

a(θ0) = ξ0‖a(θ0)‖22Ăh0 (65)

where

ξ0 =
(
aH(θ0)P

⊥
Ă0−

a(θ0)
)−1

(66)

h0 = [1, c
(0)
1 , . . . , c

(0)
Q ]T ∈ C

Q+1 (67)

with c
(0)
i being the ith element of −(ĂH

0−Ă0−)−1ĂH
0−a(θ0),

i = 1, . . . , q. Thus,
(
I−EH

Ă0−|0
)
a(θ0) = ξ0‖a(θ0)‖22Ăh0. (68)

Step 3: In this step, a more compact expression of the wOP in
(15) is obtained. More specifically, we combine (63) and (68),
and obtain that

wOP =

(
(
I−EH

Ă0−|0

)
+

Q∑

q=1

ηqEH
q|Ăq−

)

a(θ0)

= ξ0‖a(θ0)‖22Ăh0 +

Q∑

q=1

ηq · ξqv(q, 0)Ăhq

= ĂHΛ0η (69)

where the coefficient matrix H ∈ C
(Q+1)×(Q+1), the diagonal

matrix Λ0 ∈ C
(Q+1)×(Q+1) and the vector η ∈ C

Q+1 satisfy,



3138 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 12, JUNE 15, 2019

respectively, as

H = [h0,h1, . . . ,hQ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 c
(1)
1 · · · c

(Q)
1

c
(0)
1 1 · · · c

(Q)
2

...
...

. . .
...

c
(0)
Q c

(1)
Q · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(70)

Λ0 = Diag([ξ0v(0, 0), ξ1v(1, 0), . . . , ξQv(Q, 0)]) (71)

η = [1, η1, η2, . . . , ηQ]T ∈ C
Q+1. (72)

It is not hard to see that

Ăhq = (I−PĂq−)a(θq) = P⊥
Ăq−

a(θq). (73)

Then, we can rewrite ĂH as

ĂH=
[
P⊥

Ă0−
a(θ0),P

⊥
Ă1−

a(θ1), . . . ,P
⊥
ĂQ−

a(θQ)
]
�Y. (74)

Step 4: In this step, we will show that Y in (74) has a full
column rank, i.e.,

rank(Y) = Q+ 1 (75)

provided that a(θ0),a(θ1), . . . ,a(θQ) are linearly independent
or equivalently Ă has a full column rank.

To do so, we first assume that

rank(Y) < Q+ 1 (76)

or equivalently, the columns of Y are linearly dependent. It is
implied from (76) that there exists a non-zero coefficient vector
ς = [ς0, ς1, . . . , ςQ]T such that Yς = 0, or equivalently

Q∑

i=0

ςiP
⊥
Ăi−

a(θi) = 0. (77)

Without loss of generalization, we assume that ςm �= 0, where
m ∈ {0, 1, . . . , Q}. Then, we can reshape (77) as

−ςmP⊥
Ăm−

a(θm)=

m−1∑

i=0

ςiP
⊥
Ăi−

a(θi) +

Q∑

i=m+1

ςiP
⊥
Ăi−

a(θi). (78)

It is important to note that a(θm) ∈ R(Ăi−) for 0 ≤ i ≤ Q and
i �= m. Then, we have

aH(θm)P⊥
Ăi−

= 0, for 0 ≤ i ≤ Q, i �= m. (79)

Multiplied by aH(θm) to both sides from the left of (78) yields

−ςmaH(θm)P⊥
Ăm−

a(θm) = 0. (80)

Recalling the assumption that ςm �= 0, Eqn. (80) implies that

aH(θm)P⊥
Ăm−

a(θm) = ‖P⊥
Ăm−

a(θm)‖22 = 0 (81)

which yields P⊥
Ăm−

a(θm) = 0 or a(θm) ∈ R(Ăm−), and then

contradicts with the assumption that Ă has a full column rank.
Thus, we learn that (76) cannot be established. One readily de-
rives that rank(Y) = Q+ 1 since Q+ 1 ≤ N . This completes
the proof of (75).

Step 5: In the last step, we will complete the proof of
Proposition 1 by showing that HΛ0 is invertible, provided that
a(θ0),a(θ1), . . . ,a(θQ) are linearly independent and v(q, 0) �=
0 for ∀q = 1, . . . , Q.

To begin with, it is noted from the result of Step 4 that Y has
a full column rank. Since Y = ĂH and Ă has a full column
rank, we learn that H is invertible.

On the other hand, Ă having full column rank implies
that a(θi) /∈ R(Ăi−), or equivalently P⊥

Ăi−
a(θi) �= 0, for ∀i =

0, 1, . . . , Q. Then, we know that

ξi = (aH(θi)P
⊥
Ăi−

a(θi))
−1 = (‖P⊥

Ăi−
a(θi)‖22)−1 > 0 (82)

holds true for ∀i = 0, 1, . . . , Q. In addition, if v(q, 0) �= 0 for
∀q = 1, . . . , Q, all the diagonal element of Λ0 in (71) will be
non-zero. Thus, Λ0 is invertible.

Thanks to the fact that both H and Λ0 are invertible, one can
see that HΛ0 is invertible.

Now recalling the weight w� in (12), we know that for
∀β1, . . . , βQ, there exists a corresponding u in (13) such that
w� = Ă

[
1 uT

]T. Since HΛ0 is invertible, from (69) one can
verify that there must exist η1, . . . , ηQ or a vector η satisfying

η = [1, η1, η2, . . . , ηQ]T = h−1(HΛ0)
−1
[
1 uT

]T (83)

and a corresponding c = h−1, such that

wOP = ĂHΛ0η = h−1Ă
[
1 uT

]T
= cw� (84)

whereh is the first entry of (HΛ0)
−1
[
1 uT

]T. This completes
the proof of Proposition 1.
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