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Abstract—In this paper, the problem of how to optimally and
precisely control array response levels is addressed. By using the
concept of the optimal weight vector from the adaptive array the-
ory and adding virtual interferences one by one, the change rule
of the optimal weight vector is found and a new formulation of
the weight vector update is thus devised. Then, the issue of how
to precisely control the response level of one single direction is in-
vestigated. More specifically, we assign a virtual interference to a
direction such that the response level can be precisely controlled.
Moreover, the parameters, such as the interference-to-noise ratio,
can be figured out according to the desired level. Additionally, the
parameter optimization is carried out to obtain the maximal array
gain. The resulting scheme is called optimal and precise array re-
sponse control (OPARC) in this paper. To understand it better, its
properties are given, and its comparison with the existing accurate
array response control algorithm is provided. Finally, simulation
results are presented to verify the effectiveness and superiority of
the proposed OPARC.

Index Terms—Array response control, adaptive array theory,
array pattern synthesis, array signal processing.

I. INTRODUCTION

ARRAY antenna has been extensively applied in many
fields, such as, radar, navigation and wireless commu-

nications [1]. It is known that the array pattern design is of
significant importance to enhance system performance. For in-
stance, in radar systems, it is desirable to mitigate returns from
interfering signals, by designing a scheme which results in nulls
at directions of interferences. In some communication systems,
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it is critical to shape multiple-beam patterns for multi-user recep-
tion. Additionally, synthesizing a pattern with broad mainlobe
is beneficial to extend monitoring areas in satellite remote sens-
ing. Generally speaking, array pattern can be designed either
adaptively or non-adaptively. Determining the complex weights
for array elements so as to achieve a desired beampattern is
known as array pattern synthesis. With regard to this problem,
it is expected to find weights that satisfy a set of specifications
on a given beampattern, in a data-independent or nonadaptive
manner.

Over the past several decades, a great number of pattern syn-
thesis approaches have been proposed, see, e.g., [2]–[14]. Par-
ticularly, in [12], an iterative sampling method is utilized to
make the sidelobe peaks conform to a specified shape within
a given tolerance. For sidelobe control in cylindrical arrays,
an artificially created noise source environment can be utilized
[13]. For a circular ring array, a symmetrical pattern with low
sidelobes is achieved in [14] by adopting a field-synthesis tech-
nique. Note that although the solutions in [12]–[14] are able
to control sidelobes for arrays with some particular configu-
rations, they cannot be straightforwardly extended to general
geometries. On the contrary, the accurate array response control
(A2RC) approach [15] provides a simple and effective manner
to accurately control array response level of arbitrary arrays. The
A2RC algorithm stems from the adaptive array theory. Unfortu-
nately, the weight update of A2RC is theoretically imperfect and
the ultimate result may suffer from a performance loss, see [16].
Based on A2RC, a multi-point accurate array response control
(MA2RC) method has been developed in [17] to flexibly ad-
just array responses of multiple points. However, a satisfactory
performance cannot be always guaranteed due to its empirical
solution.

These shortcomings of the existing approaches motivate us to
have an innovative method to precisely, flexibly and optimally
control the response level. To do so, we first investigate how
the optimal weight vector in the adaptive array theory changes
along with the increase of the number of interferences. Then,
a new scheme for weight vector update is developed and fur-
ther exploited to realize the precise array response control. Fur-
thermore, a parameter optimization mechanism is proposed by
maximizing the array gain [18]. It is shown that, the proposed
optimal and precise array response control (OPARC) algorithm
is capable of precisely and flexibly controlling the response
level of an arbitrary array. Furthermore, its optimality (in the
sense of array gain) can be well guaranteed. Although it is also
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developed from the foundation of the adaptive array theory, the
resulting weight vector of the proposed OPARC algorithm is
an optimal beamformer, which may not be true in the existing
A2RC method. More specific differences between OPARC and
A2RC will be presented later.

It should be mentioned that this paper focuses on the main
concepts and fundamentals of the OPARC scheme, while the
extensions and applications (such as pattern synthesis and qui-
escent pattern control [19]) will be carried out in the companion
paper [20]. The rest of the paper is organized as follows. Our
proposed OPARC algorithm is presented in Section II. Further
insights into OPARC are presented in Section III to provide
more useful and interesting properties. In Section IV, compar-
isons between OPARC and the existing A2RC are presented.
Representative simulations are conducted in Section V and con-
clusions are drawn in Section VI.

Notations: We use bold upper-case and lower-case letters to
represent matrices and vectors, respectively. In particular, we
use I, 1 and 0 to denote the identity matrix, the all-one vector
and the all-zero vector, respectively. j �

√−1. (·)T , (·)∗ and
(·)H stand for the transpose, complex conjugate and Hermitian
transpose, respectively. | · | denotes the absolute value and ‖ · ‖2
denotes the l2 norm. We use H(i, l) to stand for the element at
the ith row and lth column of matrix H.�(·) and�(·) denote the
real and imaginary parts, respectively. E{·} represents expec-
tation. det(·) is the determinant of a matrix. The sign function
is denoted by sign(·). � represents the element-wise division
operator. We use diag(·) to return a column vector composed
of the diagonal elements of a matrix, and use Diag(·) to stand
for the diagonal matrix with the components of the input vector
as the diagonal elements. Finally, R and C denote the sets of all
real and all complex numbers, respectively, and SN

++ denotes
the set of N × N positive definite matrices.

II. OPARC ALGORITHM

In order to present our proposed OPARC algorithm, we first
briefly recall the adaptive array theory.

A. Adaptive Array Theory

Consider an array of N elements. The array observation vec-
tor x(t), which is composed of the components of signal, inter-
ference and noise, can be expressed as

x(t) = a(θ0)s0(t) +
k∑

�=1

a(θ�)s�(t) + n(t) (1)

where n(t) stands for the noise component, k is the number of
interferences, θ0 is the angle of the desired signal, s0(t) is the
signal waveform, θ� and s�(t) denote the angle and waveform
of the �th interference, respectively, � = 1, . . . , k. In addition,
a(θ) represents the steering vector.1 More exactly, for a given

1Note that in this work, we reasonably assume that the steering vector a(θ)
is known exactly, also see in [10]–[12]. Otherwise, we should first estimate
the steering vector and then apply our algorithm. The discussion of steering
vector estimation is beyond the scope of this paper and the related study is not
presented here.

θ, we have

a(θ) = [g1(θ)e−jωτ1 (θ) , . . . , gN (θ)e−jωτN (θ) ]T (2)

where gn (θ) denotes the pattern of the nth element, τn (θ) is
the time-delay between the nth element and the reference point,
n = 1, . . ., N , ω denotes the operating frequency. Assuming
that the noise is white and the interferences are independent with
each other, we can express the N × N noise-plus-interference
covariance matrix as

Rn+i =E

⎧
⎨

⎩

(
k∑

�=1

a(θ�)s�(t)+n(t)

)(
k∑

�=1

a(θ�)s�(t)+n(t)

)H
⎫
⎬

⎭

= σ2
n I +

k∑

�=1

σ2
� a(θ�)aH(θ�) (3)

where σ2
n and σ2

� stand for the noise and interference powers,
respectively.

The output of a narrow band beamformer is given by

y(t) = wHx(t) (4)

where t is the time index, w is the N × 1 complex vector of
beamformer weights. To suppress the unwanted interferences
and noise, the optimal adaptive beamformer weight vector w
steering to the direction θ0 can be obtained by maximizing the
output signal-to-interference-plus-noise ratio (SINR) defined as

SINR =
σ2

s |wHa(θ0)|2
wHRn+iw

(5)

where σ2
s = E{|s0(t)|2} stands for the signal power. It is known

that the optimal weight vectorwopt , which maximizes the SINR,
is given by [18]

wopt = αR−1
n+ia(θ0) (6)

where α is a normalization factor and does not affect the output
SINR, and hence, will be omitted in the sequel.

Note that the above SINR can be expressed as G · σ2
s /σ2

n ,
where G is defined as

G =
|wHa(θ0)|2
wHTn+iw

(7)

with Tn+i � Rn+i/σ2
n standing for the normalized noise-plus-

interference covariance matrix, i.e.,

Tn+i =
Rn+i

σ2
n

= I +
k∑

�=1

β�a(θ�)aH(θ�) (8)

where β� � σ2
� /σ2

n denotes the interference-to-noise ratio
(INR). Note that G represents the amplification factor of the in-
put signal-to-noise ratio (SNR) σ2

s /σ2
n , and therefore, is termed

as the array gain [18]. As a result, the criterion of array gain G
maximization is adopted to achieve the optimal weight vector.

B. Update of the Optimal Weight Vector

It can be seen from (6)–(8) that the optimal weight vec-
tor wopt depends on Rn+i or Tn+i , which is not available
for the following data-independent array response control: for
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a given steering vector a(θ) in (2) and a beam axis θ0 , de-
sign a weight vector w such that the normalized array re-
sponse L(θ, θ0) � |wHa(θ)|2/|wHa(θ0)|2 meets some specific
requirements. In this paper, we are interested in the requirements
of array response levels, i.e., finding weight vectors such that
the array responses at a given set of angles are equal to a set
of predescribed values. Our basic idea is to construct a virtual
normalized noise-plus-interference covariance matrix (VCM),
denoted as Tk , to achieve the given response control task. Note
that since the VCM Tk to be determined is not produced by real
data, it may not have any physical meaning. Moreover, it can be
neither positive definite nor Hermitian (its rationality will be dis-
cussed later). By making use of the VCM, the data-dependent
adaptive array theory can be applied to the data-independent
situation considered in this paper. This allows us to optimally
update the weight vector wk−1,opt = T−1

k−1a(θ0) to wk,opt such
that a desired response level ρk at θk can be achieved by assign-
ing an appropriate virtual interference. Thus, the problem we
concern here is to figure out the characteristics, e.g., INR, of the
virtual interference.

We use induction to describe the problem and the algorithm
below. Suppose that the response levels of the k − 1 directions
have been successively controlled by adding k − 1 virtual in-
terferences. Meanwhile, the corresponding VCM is denoted as
Tk−1 . For a given θk and its desired level ρk , we can assign the
kth virtual interference coming from θk by designing its INR
(i.e., βk ). To find out βk , from (8) we notice that the VCM can
be updated as

Tk = Tk−1 + βka(θk )aH(θk ). (9)

Using the Woodbury Lemma [21], we have

T−1
k = T−1

k−1 −
βkT−1

k−1a(θk )aH(θk )T−1
k−1

1 + βkaH(θk )T−1
k−1a(θk )

. (10)

Accordingly, the optimal weight vector is given by wk,opt =
T−1

k a(θ0). Recalling (6) and (10), we can express wk,opt as

wk,opt = wk−1,opt + γkT−1
k−1a(θk ) (11)

where wk−1,opt = T−1
k−1a(θ0) denotes the previous optimal

weight vector and γk is given by

γk = − βkaH(θk )T−1
k−1a(θ0)

1 + βkaH(θk )T−1
k−1a(θk )

� Ψk (βk ) (12)

with Ψk (·) denoting a mapping from βk to γk .
Note that the solution in (11)–(12) gives the optimal solution

for maximizing the SINR, which may not meet the response
level ρk at θk . In order to meet this response level requirement,
we next consider the following questions first. Given the previ-
ous weight vector wk−1,opt = T−1

k−1a(θ0), does there exist γk

(or equivalently βk ) such that the response level at θk is pre-
cisely ρk ? and what value it should be if it exists? To do so, we
reformulate the weight vector as

wk = wk−1 + γkvk (13)

where the subscript (·)opt is omitted for notational simplicity
and vk is defined as

vk � T−1
k−1a(θk ). (14)

Mathematically, the problem of finding γk such that the array
response level at θk is ρk can be written as

L(θk , θ0) = |wH
k a(θk )|2/|wH

k a(θ0)|2 = ρk (15)

where the desired array response level satisfies ρk ≤ 1. The
combination of (13) and (15) yields

zH
k Hkzk = 0 (16)

where zk and Hk are, respectively, defined as

zk � [1 γk ]T

Hk � [wk−1 vk ]H
(
a(θk)aH(θk)−ρka(θ0)aH(θ0)

)
[wk−1vk ]. (17)

By expanding (16) and (17), we immediately have the following
proposition.

Proposition 1: Suppose that γk (i.e., the second entry of zk )
satisfies (16), if Hk (2, 2) = 0, it can be derived that the trajec-
tory of

[�(γk ) �(γk )
]T is a line as

�[Hk (1, 2)]�(γk ) −�[Hk (1, 2)]�(γk ) = −Hk (1, 1)/2.

If Hk (2, 2) 	= 0, the trajectory of [�(γk ) �(γk )]T is a circle,
denoted by Cγ :

Cγ =
{

[�(γk ) �(γk )]T
∣∣∣
∥∥[�(γk ) �(γk )]T − cγ

∥∥
2 = Rγ

}

with the center

cγ =
1

Hk (2, 2)

[−� [Hk (1, 2)]
� [Hk (1, 2)]

]
(18)

and the radius

Rγ =
√

−det(Hk )
/|Hk (2, 2)|. (19)

Proof: See Appendix A. �
From this proposition, it is known that, given the previous

weight vector wk−1 = T−1
k−1a(θ0), there exist infinitely many

solutions of γk to achieve a response level of ρk at θk . This
implies that the response level at a certain direction can be pre-
cisely adjusted by assigning a virtual interference with properly
designed INR parameter γk .

It is clear that Hk (2, 2) = 0 is equivalent to

ρk =

∣∣(T−1
k−1a(θk ))Ha(θk )

∣∣2
∣∣(T−1

k−1a(θk ))Ha(θ0)
∣∣2 . (20)

In this case ρk is equal to the normalized power response at θk

when the weight vector isT−1
k−1a(θk ), i.e., when the beampattern

steers to the beam axis θk . Typically, a beampattern reaches its
maximum at the beam axis, i.e., we have ρk > 1 if θk 	= θ0 . This
would contradict with the fact that ρk ≤ 1. Hence, Hk (2, 2) = 0
usually will not occur and in the sequel we only focus on the
case of Hk (2, 2) 	= 0, and from Proposition 1, the trajectory of
[�(γk )�(γk )]T is a circle, as illustrated in Fig. 1. Then, the
remaining question is among all these valid solutions of γk (or
βk ), to meet the response level requirement, which one is to
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Fig. 1. Geometric distribution of γk (Fa and Fb represent the locations of
[�(γk ,a )�(γk ,a )]T and [�(γk ,b )�(γk ,b )]T , respectively).

maximize the SINR or beam gain? We will study this question
below.

Remark 1: Note that in (13), a term has been added on
the weight vector wk−1 , and hence, the array power response at
the beam axis θ0 may change. This may degrade the performance
on target detection. To this end, in the following, we maximize
the array gain when controlling response level. Since the array
gain is proportional to the output SINR, a good performance on
target detection can thus be guaranteed.

C. Selection of γk and Update of the Weight Vector

The preceding problem can be formulated as the follow-
ing constrained optimal and precise array response control
(OPARC) problem:

maximize
γk

Gk � |wH
k a(θ0)|2/|wH

k Tkwk | (21a)

subject to L(θk , θ0) = ρk (21b)

wk = wk−1 + γkT−1
k−1a(θk ). (21c)

From (21a), one can see that the desired weight vector is ex-
pected to provide the maximum array gain with some additional
constraints. Apart from the response level constraint (21b), we
have also imposed constraint (21c) in the above OPARC scheme.
This makes the resulting wk be an optimal weight vector.

When γk satisfies (12), (21c) leads to wk = T−1
k a(θ0). In

order to solve problem (21), we first substitute wk = T−1
k a(θ0)

into the objective function and get

Gk =
aH(θ0)T−H

k a(θ0)aH(θ0)T−1
k a(θ0)∣∣aH(θ0)T−H

k TkT−1
k a(θ0)

∣∣

= |aH(θ0)T−1
k a(θ0)| (22)

where we have utilized the identities (aH(θ0)T−H
k a(θ0))H =

aH(θ0)T−1
k a(θ0) and |aH(θ0)T−H

k a(θ0)|= |aH(θ0)T−1
k a(θ0)|.

Note again that Tk is not assumed to be Hermitian symmet-
ric in the derivation of (22). Then, recalling (10) and (12), we

can rewrite Gk as

Gk =
∣∣aH(θ0)T−1

k−1a(θ0) + γkaH(θ0)T−1
k−1a(θk )

∣∣

= |ξ̃c | · |ξ0/ξ̃c + γk | (23)

where ξ0 , ξk , ξc and ξ̃c are defined as

ξ0 � aH(θ0)T−1
k−1a(θ0) (24a)

ξk � aH(θk )T−1
k−1a(θk ) (24b)

ξc � aH(θk )T−1
k−1a(θ0) (24c)

ξ̃c � aH(θ0)T−1
k−1a(θk ). (24d)

Then, from Proposition 1, problem (21) can be expressed as

maximize
γk

|ξ0/ξ̃c + γk | (25a)

subject to
[�(γk ) �(γk )

]T ∈ Cγ . (25b)

Although the problem (25) is non-convex, it will be shown
that it can be analytically solved as follows.

Proposition 2: Denote the intersections of the circle and the
line connecting the origin O = [0, 0]T and the center cγ in (18)
as Fa � [�(γk,a)�(γk,a)]T and Fb � [�(γk,b)�(γk,b)]T , re-
spectively, and assume that |γk,a | < |γk,b |. If Tk−1 is Hermitian
(note that the Hermitian property of Tk−1 has not been guaran-
teed as we have mentioned earlier), then the optimal solution of
(25) satisfies

γk,� =
{

γk,a , if ζ > 0
γk,b , otherwise

(26)

where

ζ � sign[cγ (1)] · sign[�(d) − cγ (1)] (27)

and

d � −ξ0
/
ξ∗c . (28)

In addition, γk,a and γk,b in (26) are calculated as

γk,a = − (‖cγ ‖2 − Rγ ) χξc

‖cγ ‖2Hk (2, 2)
, γk,b = − (‖cγ ‖2 + Rγ ) χξc

‖cγ ‖2Hk (2, 2)

where χ = ξk − ρkξ0 ∈ R, cγ and Rγ are defined in
Proposition 1.

Proof: See Appendix B. �
To have a better understanding, the locations of γk,a and γk,b

have been illustrated in Fig. 1. Obviously, once the optimal γk,�

has been obtained, we can update the weight vector as

wk = wk−1 + γk,�vk . (29)

This completes the update of weight vector of the kth step.

D. Update of the Inversion of VCM

Since the calculation of γk,� requires the inversion of VCM
(i.e., T−1

k−1) which is assumed to be Hermitian in Proposition
2, in the sequel we shall discuss how to update T−1

k (in order
to make the next step of response control feasible) and how to
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Algorithm 1: OPARC Algorithm.

1: give the initial weight vector w0 = a(θ0) and set
T0 = I, prescribe the direction θk and the
corresponding desired level ρk , k = 1, 2, . . .

2: for k = 1, 2, . . . , do
3: calculate γk,� from (26) and obtain vk from (14)
4: update wk as wk = wk−1 + γk,�vk

5: update T−1
k as T−1

k = T−1
k−1 + γk,�vkvH

k

/
ξc

6: end for
7: output wk directly

guarantee the Hermitian property. To address these two prob-
lems, we first assume that Tk−1 is Hermitian and the optimal
γk,� has been obtained with the aid of Proposition 2. Then, from
(12) we have

−βk,�/ (1 + βk,�ξk ) = γk,�/ξc (30)

where βk,� = Ψ−1
k (γk,�) denotes the INR corresponding to γk,�

in the kth step. Obviously, the combination of (10) and (30)
yields

T−1
k = T−1

k−1 +
γk,�vkvH

k

ξc
. (31)

Therefore, T−1
k can be calculated out straightforwardly (without

the calculation of Tk and its inversion), once the optimal γk,�

obtained.
To further explore the Hermitian property of Tk , let us revisit

Proposition 2 and get

γk,�

ξc
= − (‖cγ ‖2 ± Rγ ) χ

‖cγ ‖2Hk (2, 2)
∈ R (32)

which is a real-valued number. Thus, it is known that Tk is
Hermitian as long as Tk−1 is Hermitian. Accordingly, it can be
readily concluded that if we set T0 = I, then Ti is Hermitian
for i = 1, 2, . . . , k.

Now, it is seen that the response levels can be successively
adjusted by assigning virtual interferences. Therefore, we can
utilize the above update procedures iteratively to fulfill the pre-
scribed response control requirement. Note that in each step
of our array response control, only the response level of the
current angle θk can be precisely adjusted, and the responses
of the previously-controlled angles may have some perturba-
tions. This also implies that the index k can be even greater than
N − 1. Finally, the proposed OPARC method is summarized in
Algorithm 1.

III. SOME PROPERTIES OF OPARC

In the previous section, we have shown that the response level
at a certain direction can be optimally and flexibly adjusted by
assigning a virtual interference. Instead of determining βk (i.e.,
the INR of the virtue interference assigned in the kth step), an
alternative parameter γk , mapping of βk , is chosen to facilitate
the algorithm derivation. However, since INR has a physical
meaning and is always a non-negative value in a real data case, it
is worth examining the direct relationship between the response

level and βk . To do so, in this section we continue the analysis
on the OPARC scheme, mainly focus on the selection of INR
βk rather than its mapping γk .

A. Geometrical Distribution of βk

As shown in (12), γk is a mapping of βk , and βk can be
expressed with respect to γk as

βk = −γk

/
(ξc + γkξk ) = Ψ−1

k (γk ) (33)

where Ψ−1
k (·) is the inverse function of Ψk (·) in (12). Thus, βk

can be calculated once γk is available. For the trajectory of βk

when the array response level ρk is satisfied at angle θk , let us
recall Proposition 1 and express γk as

γk = cγ (1) + jcγ (2) + Rγ ejϕ (34)

where cγ and Rγ are the center and the radius of the circle given
in Proposition 1, ϕ can be any real-valued number. Substituting
(34) into (33), one gets

βk =
(
p1 + p2e

jϕ
)
/
(
q1 + q2e

jϕ
)

(35)

where pl and ql (l = 1, 2) are complex numbers satisfying

p1 = −cγ (1) − jcγ (2), p2 = −Rγ (36a)

q1 = ξc + (cγ (1) + jcγ (2)) ξk , q2 = Rγ ξk . (36b)

With some calculation, it is not difficult to have the following
proposition.

Proposition 3: The trajectory of [�(βk ) �(βk )]T with βk

satisfying (35) is a circle Cβ with the center

cβ =
[
ξ0/(|ξc |2 − ξ0ξk ), 0

]T (37)

and the radius

Rβ = |ξc |
/ [√

ρk · ∣∣|ξc |2 − ξ0ξk

∣∣] (38)

i.e.,

βk = cβ (1) + jcβ (2) + Rβ ejφ (39)

where φ can be any real-valued number.
Similar to γk , all the βk on the above circle can be used to

precisely adjust the response level at θk to its desired level ρk .
An interesting difference with γk is that the calculations of cβ

and Rβ do not require the knowledge of wk−1 . This implies that
all βk ’s (including the optimal one later) can be obtained without
knowing any weight vectors. On the contrary, the determination
of γk relies on the availability of the previous weight vector
wk−1 .

In addition, Proposition 3 implies that the center of the tra-
jectory of [�(βk ) �(βk )]T is located on the real axis, and is
independent of the desired level ρk .

B. Determination of the Optimal βk

Among all the valid βk for the control of the array response
level ρk at θk , the optimal one is the one that maximizes the
array gain. Therefore, the following constrained optimization
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Fig. 2. Illustration of the proposed OPARC algorithm.

problem can be formulated to select the optimal βk :

maximize
βk

Gk = |wH
k a(θ0)|2/|wH

k Tkwk | (40a)

subject to L(θk , θ0) = ρk (40b)

wk = wk−1 + Ψk (βk )T−1
k−1a(θk ) (40c)

where the parameter γk has been replaced in (40c) by Ψk (βk ).
Clearly, the above optimization problem (40) is equivalent to
problem (21). Therefore, the optimal solution (denoted as βk,� )
of (40) can be readily obtained by utilizing the mapping as

βk,� = Ψ−1
k (γk,�). (41)

Combining the result of γk,� in (26) with some calculation, we
can derive Proposition 4 below.

Proposition 4: The optimal solution of (40) is given by

βk,� =
{

βk,r , if −1/ξk > ξ0/
(|ξc |2 − ξ0ξk

)

βk,l , otherwise
(42)

where βk,r and βk,l are the intersections of circle Cβ and the
real axis �(·) = 0:

βk,r = Rβ + ξ0/
(|ξc |2 − ξ0ξk

)
(43)

βk,l = −Rβ + ξ0/
(|ξc |2 − ξ0ξk

)
. (44)

It is not hard to see from (42) that the optimal βk,� is a
real-valued number, while the valid βk in Proposition 3 for the
array response control may be complex valued. However, as
mentioned earlier, the physical meaning of βk is the INR as it is
used in (8) and it cannot be negative. From (42)–(44), the solved
optimal βk,� may be negative, which might be because there
is no assumption of the used VCM Tk−1 being non-negative
definite. This will be studied together with the update of the
VCM below. On the other hand, if Tk−1 is Hermitian, then
Tk = Tk−1 + βk,�a(θk )aH(θk ) is also Hermitian, since βk,�

is real. This is consistent with the inference obtained in the
paragraph below Eqn. (32). Finally, it is obvious that the optimal
βk in (42) does not depend on the knowledge of the weight
vectors in the previous steps.

Algorithm 2: OPARC Algorithm (an Equivalent Variant).

1: give a(θ0) and set T0 = I, specify the direction θk and
the corresponding desired level ρk with k = 1, 2, . . .

2: for k = 1, 2, . . . , do
3: calculate βk,� from (42)
4: update Tk as Tk = Tk−1 + βk,�a(θk )aH(θk )
5: end for
6: calculate wk = T−1

k a(θ0)

Once the optimal βk has been obtained, we can express the
VCM at the current stage as

Tk = Tk−1 + βk,�a(θk )aH(θk ). (45)

Since T0 = I is taken as the initial VCM, by taking all the
assigned virtual interferences into consideration, one can alter-
natively express Tk as

Tk = I + AkΣkAH
k (46)

where Ak � [a(θ1), . . . ,a(θk )] and Σk is a diagonal matrix
containing all β’s of virtual interferences, i.e.,

Σk = Diag ([β1,� , β2,� , . . . , βk,� ]) . (47)

Accordingly, we have wk = T−1
k a(θ0). To make it clear, the

variant of the OPARC method is summarized in Algorithm 2.
Note that the calculation of intermediate weight vectors is
avoided, due to the fact that neither the calculation of βk,� nor
Tk relies on weight vectors. Therefore, the procedure of array
response control is simplified. To have an intuitive understand-
ing, a schematic diagram of OPARC is presented in Fig. 2, where
the equations of weight vector updating are also incorporated.

Before proceeding, it is interesting to provide a deep in-
sight and a geometrical perspective on the relationship be-
tween γk and βk . It is not hard to see that the condition
−1/ξk > ξ0/

(|ξc |2 − ξ0ξk

)
in (42) is equivalent to the con-

dition ζ > 0 in (26), if and only if ρkξ0 < ξk . It implies that the
conditions for selecting βk,� between βk,l and βk,r and selecting
γk,� between γk,a and γk,b may be different and are the same
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Fig. 3. Illustration of the mapping Ψk (·).

under a certain condition, i.e., ρkξ0 < ξk . Thus, we have
{

γk,a = Ψk (βk,r ), γk,b = Ψk (βk,l), if ρkξ0 < ξk

γk,a = Ψk (βk,l), γk,b = Ψk (βk,r ), otherwise.
(48)

To have an intuitive perspective on Ψk (·), a geometrical
illustration is given in Fig. 3, where Jr , Jl , Fa and Fb

stand for the points [�(βk,r )�(βk,r )]T , [�(βk,l)�(βk,l)]T ,
[�(γk,a)�(γk,a)]T and [�(γk,b)�(γk,b)]T , respectively.

C. Positive Definite Virtual Covariance Matrices

Firstly, the following conclusion, which simplifies the selec-
tion of βk,� , can be obtained.

Proposition 5: If Tk−1 ∈ SN
++ , we have

βk,� = βk,r = (|ξc | − √
ρkξ0)/[

√
ρk (ξ0ξk − |ξc |2)]. (49)

Furthermore, if Tk−1 ∈ SN
++ , then Tk ∈ SN

++ if and only if
ρk < ξ2

k /|ξc |2 .
Proof: See Appendix C. �
Similar to the argument in the paragraph below Eqn. (20),

ξ2
k /|ξc |2 is in general greater than 1 and it is assumed ρk ≤ 1.

Thus, we have ρk < ξ2
k /|ξc |2 . As a consequence, in each step of

weight vector update, we have Tk ∈ SN
++ and βk,� = βk,r , as

long as Tk−1 ∈ SN
++ . Since in our algorithm T0 = I is taken

as the initial VCM, we have Tk ∈ SN
++ and βk,� = βk,r .

Proposition 6: If Tk−1 ∈ SN
++ , then

βk,� ≥ 0 ⇔ |ξc | ≥ √
ρkξ0 (50a)

βk,� < 0 ⇔ |ξc | <
√

ρkξ0 . (50b)

Proof: From (75) in the proof of Proposition 5 in Appendix
C, we have ξ0ξk − |ξc |2 > 0 provided that Tk−1 ∈ SN

++ . Then,
from (49), the proof of (50) is completed. �

Substituting the definitions of ξc and ξ0 into (50) and using
wk−1 = T−1

k−1a(θ0), we have

βk,� ≥ 0 ⇔ ρk ≤ ∣∣wH
k−1a(θk )

∣∣2/
∣∣wH

k−1a(θ0)
∣∣2 (51a)

βk,� < 0 ⇔ ρk >
∣∣wH

k−1a(θk )
∣∣2/
∣∣wH

k−1a(θ0)
∣∣2 . (51b)

Notice that
∣∣wH

k−1a(θk )
∣∣2/
∣∣wH

k−1a(θ0)
∣∣2 above represents the

normalized response at θk , of the previous weight vector wk−1 .

Clearly, (51) shows that the resultant βk,� is non-negative if
the desired level ρk is lower than the response level at θk of
the previous weight vector wk−1 . Otherwise, a negative βk,� is
obtained if it is required to elevate the previous response level
of θk . We can see that the negative βk,� is still meaningful in our
discussion of array response control using virtual interferences,
although it cannot occur in a real data covariance matrix with
real interferences.

In addition to the above two propositions, the following result
can be obtained.

Proposition 7: If Tk−1 ∈ SN
++ , then problem (40) has the

same optimal solution as that of the following one

maximize
βk

|wH
k a(θ0)|2

wH
k Tk−1wk

(52a)

subject to L(θk , θ0) = ρk (52b)

wk = wk−1 + Ψk (βk )vk . (52c)

Proof: See Appendix D. �
Interestingly, from Proposition 7, it is known that under the

same constraints (i.e., (40b) and (40c)), the optimal βk to (40)
also maximizes the previous array gain, in which only Tk−1
(but not Tk ) is taken into consideration.

For instance, consider the case when Tk−1 is a real normal-
ized noise-plus-interference covariance matrix (i.e., Tk−1 is cal-
culated from real data that contains both noise and interference),
and one applies the OPARC scheme to realize a specific array
response control task in (52b) by assigning a virtual interference
at θk . Then, it is seen from Proposition 7 that the optimal βk,� of
problem (40) also maximizes the real output SINR (not taking
the virtual interference into consideration) of beamformer. This
property will be further exploited in the companion paper [20]
to design an adaptive beamformer with specific constraint.

IV. COMPARISON WITH A2RC

In the above sections, the optimal values of γk and βk of
the virtual interference assigned in the kth step are specified.
Meanwhile, useful conclusions are obtained and two versions
of OPARC are described. In this section, comparisons will be
carried out to elaborate the differences between the recent A2RC
algorithm [15] and the above OPARC algorithm from two per-
spectives.

A. Comparison on the Formula Updating

In the A2RC method, the weight vector is updated as

wk = wk−1 + μka(θk ) (53)

where μk is the hyperparameter to be optimized. To minimize the
deviation between the resultant responses of adjacent two steps,
and meanwhile, avoid the computationally inefficient global
search, μk is empirically selected in [15] as μk,a , which is the
solution to the following problem:

minimize
μk

|μk | (54a)

subject to
[�(μk ) �(μk )

]T ∈ Cμ (54b)
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where Cμ is the following circle:

Cμ =
{

[�(μk ) �(μk )]T
∣∣∣
∥∥[�(μk ) �(μk )]T − cμ

∥∥
2 = Rμ

}

with the center

cμ =
1

Qk (2, 2)

[−� [Qk (1, 2)]
� [Qk (1, 2)]

]
(55)

and the radius

Rμ =
√

−det(Qk )
/|Qk (2, 2)| (56)

where the matrix Qk satisfies

Qk = [wk−1 a(θk )]H
(
a(θk )aH(θk )

− ρka(θ0)aH(θ0)
)
[wk−1 a(θk )].

Note that such an empirical selection may not perform well
under all circumstances. As a matter of fact, this scheme may
even lead to severe pattern distortion, as we will show later in
simulations in Section V.

In the OPARC algorithm, the weight vector is updated via
(21c). It is seen that, different from the A2RC algorithm, a scal-
ing of T−1

k−1a(θk ) is added to wk−1 , and γkT−1
k−1a(θk ) makes

the resultant wk be an optimal weight vector.
Additionally, in the proposed OPARC algorithm, we opti-

mize the parameter γk by maximizing the array gain when the
preassigned response level is satisfied.

To have a similar weight form with A2RC, it is shown in
Appendix E that we can reformulate (21c) as

wk = wk−1 + γkA(θk , . . . , θ1)dk

= wk−1 + γka(θk ) + γkA(θk−1 , . . . , θ1)d̄k (57)

where A(θk , . . . , θ1) � [a(θk ), . . . ,a(θ1)], with θi (1 ≤ i ≤
k − 1) denoting the angles of interferences that assigned pre-
viously, dk is a k × 1 vector with its first element 1, d̄k is a
(k − 1) × 1 vector obtained by removing the first element from
dk . From (57), it is observed that the added component to the
previous weight vector wk−1 in wk is a linear combination of the
steering vectors of all interferences (including both the current
a(θk ) and the previous a(θ1), . . . ,a(θk−1)). On the contrary, in
the A2RC algorithm, the added component is a scaling of the
steering vector of the single interference to be assigned (i.e.,
a(θk )). Furthermore, we can obtain the following corollary of
Proposition 2, which describes a similarity between A2RC and
OPARC.

Corollary 1: In the first step of weight update (i.e, w0 =
a(θ0), T0 = I), if ρ1 ≤ ‖a(θ1)‖2

2/‖a(θ0)‖2
2 , then μ1,� = γ1,� ,

otherwise, μ1,� = γ1,×, where γ1,× = {γ1,a , γ1,b} \ γ1,� .
Proof: See Appendix F. �
From Corollary 1, it is known that in the first step of the weight

vector update, A2RC will lead to the same result as OPARC,
provided that ρ1 ≤ ‖a(θ1)‖2

2/‖a(θ0)‖2
2 . Otherwise, the inferior

parameter γ1,× (in the sense of array gain) will be adopted
by A2RC. For the other steps of the weight vector update, i.e.,
k > 1, the proposed OPARC algorithm takes the optimal param-
eter and thus obtains a better performance than that of A2RC.

Consequently, we know that OPARC always performs at least
as good as A2RC, for a given array response control task.

B. Comparison on INRs of Virtual Interferences

We next compare the INRs of virtual interferences to show
an essential difference between A2RC and OPARC. To begin
with, we express the weight vector of A2RC in the kth step as

wk = a(θ0) + μ1a(θ1) + . . . + μka(θk )

= a(θ0) + Akbk (58)

where bk � [μ1 , μ2 , . . . , μk ]T . Note from the above that the
update of the weight vector wk in A2RC does not depend on
any VCM and no VCM update is needed. However, in order to
compare the INRs, we need to associate it to a VCM that may
be implicit/virtual. To do so, we rewrite the weight vector as

wk = T̆−1
k a(θ0)

= a(θ0) − Ak

(
I + Σ̆kAH

k Ak

)−1
Σ̆kAH

k a(θ0) (59)

where T̆k = I + Ak Σ̆kAH
k denotes a VCM, Σ̆k =

Diag([β̆k ,1 , β̆k ,2 , . . . , β̆k ,k ]) specifies the INR of the in-
terference at θi (i = 1, . . . , k) when completing the current kth
step of the weight vector update.

Note that no interference was assigned at the current θk in the
previous k − 1 steps of the response control. It is shown from
Appendix G that in the kth step of the weight update of the
A2RC algorithm, the INR of the virtual interference assigned at
θk is

β̆k ,k = − μk

aH(θk )w̆k−1 + μk‖a(θk )‖2
2
. (60)

In addition, k − 1 new interferences are additively assigned at
directions θ1 , . . . , θk−1 of A2RC to the previous (k − 1)th step.
Denote the INRs of these new interferences assigned at θi in the
kth step of the weight update as Δ̆k,i (1 ≤ i ≤ k − 1). Clearly
they satisfy

Δ̆k,i = β̆k ,i − β̆k−1,i . (61)

It can be further derived (see Appendix G) that

Δ̆k,i =
μkaH(θi)a(θk )β̆2

k−1,i

μi − μkaH(θi)a(θk )β̆k−1,i

. (62)

Generally speaking, in the kth step of A2RC, the INRs of
the newly-assigned interferences (including both β̆k ,k and Δ̆k,i

(1 ≤ i ≤ k − 1)) are complex-valued numbers. This is a differ-
ence between A2RC and OPARC. Moreover, the above analysis
shows that there are k − 1 additional interferences assigned to
the previously controlled angles (i.e., θ1 , . . . , θk−1) in the kth
step of A2RC, while in OPARC only a single interference is as-
signed (at θk ). Since our aim is to control the array response level
at θk , the newly-assigned virtual interferences at θ1 , . . . , θk−1
actually bring undesirable array response variations at these ad-
justed angles. According to the above notations, the VCM of
A2RC satisfies implicitly:

T̆k = T̆k−1 + AkDiag([Δ̆k,1 , . . . , Δ̆k,k−1 , β̆k ,k ])AH
k (63)
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TABLE I
ELEMENT LOCATIONS AND ELEMENT PATTERNS OF THE NONUNIFORM LINEAR

ARRAY (USED IN THE FIRST AND THE SECOND EXAMPLES)

which is different from that of OPARC in (45).
To summarize, the main differences between the proposed

OPARC algorithm and the existing A2RC algorithm include:
� Different formulas of the weight update are employed in

OPARC and A2RC.
� The resultant weight of OPARC can be guaranteed to be

an optimal beamformer, while A2RC method does not.
� The array gain is introduced to the parameter optimization

of OPARC, while A2RC is not.
� The update of VCM is necessary for OPARC, while A2RC

is free of this procedure although its VCM is implicitly
updated by (63).

� Two different strategies of virtual interference assigning
are adopted in these two approaches. The INRs of OPARC
are always real, but they may not be in A2RC.

V. SIMULATION RESULTS

We next present some simulations to verify the effective-
ness of our proposed OPARC. To validate the superiority of
OPARC, we also test another precise array response control
(PARC) scheme, in which we adopt the following non-optimal
parameter intentionally:

γk = γk,× � {γk,a , γk,b} \ γk,� (64)

and use the same remaining procedure as OPARC. Denote
βk,× = Ψ−1

k (γk,×). Note that γ1,× is the same as that in
Corollary 1. Clearly, PARC can precisely control array response
level as well, while its parameter γk is not optimally selected
as in OPARC. Besides OPARC and PARC, the A2RC algorithm
in [15] is also compared. We set ω = 6π × 108 rad/s, which
corresponds to a wavelength λ = 2πc/ω = 1 m with the light
speed c. Unless otherwise specified, we consider a 11-element
non-uniformly spaced linear array with nonisotropic elements.
Both the element locations xn and the element patterns gn (θ)
are listed in Table I, from which the τn (θ) in (2) can be speci-
fied as τn (θ) = xn sin(θ)/c. Additionally, we take the quiescent
weight vector a(θ0) as the initial weight and fix the beam axis
at θ0 = 20◦ except otherwise specified.

An ideal criterion of array response control is to achieve the
desired level at θk while keeping the responses at any other direc-
tions unchanged. However, such a criterion cannot be achieved,
since the array response is a continuous function. In fact, a
good array response result would bring less changes on the
previously-controlled angles. According to this criterion, we

introduce two cost functions to measure the performances of
different methods. The first one is defined as

Dk � |Lk (θk−1 , θ0) − Lk−1(θk−1 , θ0)| (65)

where Lk (θ, θ0) represents the resultant response after finishing
the k-th step of weight update. Since the response level at θk−1
has been adjusted in the (k − 1)th step as its desired level ρk−1 ,
one can rewrite Dk as Dk = |Lk (θk−1 , θ0) − ρk−1 |. It can be
seen that Dk measures the level difference between the resulting
response and the desired one at the previously-controlled angle
θk−1 , after the k-th step of array response control. The second
cost function is defined as

Jk
Δ=

1
k − 1

k−1∑

i=1

∣∣Lk (θi, θ0) − ρi

∣∣ (66)

which measures the average difference between the resulting
response and the desired one at the previously-controlled angles
θi’s, i = 1, . . . , k − 1, after the k-th step of array response con-
trol. Moreover, Jk is effective on measuring the level difference
between the resulting response and the desired one, even if the
initial or previous responses are unqualified. Clearly, both Dk

and Jk are expected to be small if the array response level is well
adjusted. In addition, we should set k ≥ 2 in the measurements
of Dk and Jk . For k = 2, one can readily obtain that Dk = Jk ,
and only the metric Dk is considered in this case. Besides Dk

and Jk above, we also test the obtained array gains of different
methods, and consider pattern variation and pattern distortion
for performance comparison.

A. Pattern Variation

In the first example, we test the performances of different
approaches for sidelobe response control. For convenience, we
carry out two steps of the array response control algorithms and
denote the two adjusted angles as θ1 and θ2 , respectively. More
specifically, the normalized responses at θ1 = −45◦ and θ2 =
−5◦ are expected to be successively adjusted to ρ1 = −40 dB
and ρ2 = −30 dB.

In the first step of response control, we can figure out that
cγ = [−0.1704,−0.0315]T , d = −8.5231 − j1.5766, γ1,a =
−0.1559 − j0.0288 and γ1,b = −0.1849 − j0.0342. On this
basis, we obtain that ζ = 1 > 0 and hence choose γ1,� = γ1,a

for OPARC and select γ1,× = γ1,b for PARC, according to (26)
and (64), respectively. Additionally, it can be figured out that
cβ = [−0.1488, 0]T and Rβ = 1.7171. We adopt β1,� = β1,r =
1.5683 for OPARC (so that the resulting array gain is max-
imized and the resulting weight vector is optimal) and take
β1,× = β1,l = −1.8659 for PARC.

For A2RC, it is found that μ1 = γ1,� = −0.1559 − j0.0288,
which coincides with the result of Corollary 1. As predicted, one
also obtains that β̆1,1 = β1,� = 1.5683. Fig. 4(a) illustrates the
resultant response patterns of different schemes after controlling
the response level of θ1 . As we can see, all these three approaches
are capable of precisely controlling the array response levels as
expected. Notice also that the result of A2RC is exactly the same
as that of OPARC, which can obtain an optimal beamformer
when there exists an interference (with INR β1,� ) at θ1 .
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Fig. 4. Resultant pattern comparison (the first example).

TABLE II
OBTAINED PARAMETER COMPARISON (THE FIRST EXAMPLE)

In the second step, with the same manner we found
out that γ2,� = −0.0685 − j0.0399, β2,� = 0.2504, γ2,× =
−0.1148 − j0.0695, β2,× = −0.4277 and μ2 = −0.0674 −
j0.0393. Fig. 4(b) depicts the results of different methods after
controlling the response level of the second angle θ2 . It is seen
that all methods can adjust L(θ2 , θ0) to ρ2 . For the proposed
OPARC scheme, it can be checked that βk,r is the ultimate
selection of βk,� (k = 1, 2). In fact, this is consistent with the
conclusion of Proposition 5. One can see that both β1,� and β2,�

are positive in this case. This coincides with the theoretical pre-
diction of Proposition 6, since it is required to lower the response
levels in either step. After the second step of array response con-
trol, the resulting beamformer of OPARC is an optimal one that
maximizes the output SINR when two interferences exist at θ1
and θ2 with INRs β1,� and β2,� , respectively.

To further examine the performance, we evaluate D2 (or
equivalently J2) as defined earlier and list their measurements
in Table II. It is observed that the proposed OPARC scheme
minimizes D2 among the three methods. From Table II and
Fig. 4(b), it is found that A2RC causes serious perturbation
(about 5 dB) at the previous point θ1 . In fact, besides the virtual
interference assigned at θ2 , another one is also assigned at the
previously adjusted direction (i.e., θ1), for the existing A2RC
algorithm. We can calculate that β̆2,2 = 0.2465 + j0.0001 and
Δ̆2,1 = −0.4120 + j2.5879 (INR of the additional interference
assigned at θ1 in the second step of response control). Notice
that both β̆2,2 and Δ̆2,1 are complex numbers, which is different
from that of OPARC. Finally, we have listed the obtained array
gains of these approaches at both steps in Table II. Clearly, it is
seen that OPARC outperforms the other two methods.

Since the metric D2 depends on the desired level at θ2 (i.e.,
ρ2), we vary ρ2 from −50 dB to −20 dB and recalculate D2

Fig. 5. Curves of D2 versus ρ2 (the first example).

with the other settings unchanged. Fig. 5 plots the curves of D2
versus ρ2 . It can be clearly observed that the proposed OPARC
algorithm performs the best on D2 . Recalling the definition of
Dk , Fig. 5 implies that OPARC brings a less perturbation to θ1
compared to its desired level. The existing A2RC causes a large
deviation to the response level at θ1 as displayed in Fig. 5.

B. Pattern Distortion

In this part, we shall further show the advantages of the
OPARC. For convenience, we set θ1 and its desired level ρ1
the same as the first example, and then conduct the second
step of the response control by taking θ2 = 23◦ and ρ2 = 0 dB.
Notice that θ2 is in the mainlobe region in this case, and it is
required to elevate the response level there.

Clearly, the obtained parameters of the second step are re-
newed for all methods tested, while the results of the first step
keep unaltered compared to the previous example. Here, it can
be obtained with the A2RC algorithm that μ2 = −0.5931 +
j0.8040, β̆2,2 = −0.3923 − j0.4011 and Δ̆2,1 = −1.8001 +
j0.0334. For the PARC algorithm, we obtain γ2,× = −0.7108 +
j0.7171 and β2,× = −0.8522. While for OPARC, its parame-
ter satisfies γ2,� = γ2,b = 0.8352 − j0.8438 and β2,� = β2,r =
−0.0577. It is worth noting that we have selected γb , which
is different from that at Step 1 (where γa is selected), to
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Fig. 6. Comparison of synthesized patterns at the 2nd step of the 2nd example.

TABLE III
OBTAINED PARAMETER COMPARISON (THE SECOND EXAMPLE)

obtain the final γ2,� . In fact, this flexible mechanism of pa-
rameter determination in OPARC enables us to avoid certain
pattern distortion, which is inevitable in A2RC or PARC. To see
this clearer, we have depicted the synthesized patterns in Fig. 6.
It can be found that all the response levels at θ2 still meet the
requirement as before. However, it shows clearly that the pat-
terns of A2RC and PARC are severely distorted. The obtained
mainlobes are split and the resultant sidelobe levels are raised
for both A2RC and PARC. For the proposed OPARC, none of
the above undesirable phenomena happens and a well-shaped
pattern has been obtained. Notice that β2,� is negative in this
scenario. This is consistent with the conclusion of Proposition 6,
since the response level needs to be lifted in this second step
of response control. It should be emphasized that the resulting
weight of OPARC is optimal on maximizing the output SINR
if two interferences exist at θ1 and θ2 with INRs β1,� and β2,� ,
respectively.

The details of D2 and the obtained array gains have been
specified in Table III, from which the merits of the proposed
OPARC algorithm are clearly observed. Note that the array gain
G1 is not listed in Table III since it has been reported in Table II.
Again, to further examine the performance, we vary ρ2 from
−20 dB to 0 dB, and depict the curve of D2 versus ρ2 in Fig. 7.
As illustrated in this figure, A2RC causes a great perturbation on
θ1 (i.e., high value of D2). On the other hand, OPARC performs
the best when measuring D2 .

C. Further Investigation With Randomized Array
Configurations

To show that our algorithm behaves well not only under care-
fully chosen array configurations, we carry out the third example
by randomly selecting the element number and positions, and
taking the influence of mutual coupling into consideration as

Fig. 7. Curves of D2 versus ρ2 (the second example).

TABLE IV
SETTINGS OF θk AND ρk

well. In this case, we consider a linear array with isotropic el-
ements. The beam axis is taken as θ0 = −10◦. We pre-assign
ten angles and their corresponding desired levels, see Table IV
for details. To present a fair comparison, we carry out Monte
Carlo simulation by taking the realization number as 1000, and
then depict the resulting Dk , Jk and Gk in an average sense.
In each realization, the element number N is randomly selected
as a positive integer from 8 to 16, so that the number of con-
trolled points may be either less or greater than N . The element
space between two adjacent sensors is distributed uniformly in
the range [0.4λ, 0.6λ]. The mutual coupling matrix (denoted as
Z ∈ CN ×N ) is complex symmetry with unit elements on diag-
onal. The amplitudes of other entries of Z are fixed as 0.1, and
their phases are distributed uniformly in the range [0, 2π). In
addition, the PARC algorithm is not considered in this example,
since it always performs worse than OPARC as shown in the
previous two examples.

Fig. 9 illustrates several intermediate results of one
realization with N = 8. In particular, Fig. 8(b) and Fig. 8(c)
present the synthesized patterns at the 9th and the 10th steps,
respectively. Note from Fig. 8(b) and Fig. 8(c) that the response
level of θ9 or θ10 can still be adjusted precisely for both algo-
rithms, although the corresponding iteration index k has become
greater than the element number N and the resulting beampat-
terns of A2RC have been distorted.

To present the superiority of OPARC, the curves of average
Dk , Jk and Gk have also been depicted in Fig. 9, with the
increase of the iteration index k. For each iteration step, Fig. 9
shows that the proposed OPARC results smaller values on Dk

and Jk and obtains a higher array gain Gk , when comparing to
the A2RC algorithm. Therefore, the proposed OPARC algorithm
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Fig. 8. One realization of resultant patterns (the third example).

Fig. 9. Performance comparison (the third example).

performs well not only under the circumstances of carefully
chosen array configurations.

VI. CONCLUSION

In this paper, a novel algorithm of optimal and precise array
response control (OPARC) has been proposed. This algorithm
origins from the adaptive array theory and the change rule of
the optimal weight vector, when adding interferences one by
one, has been found. Then, the parameter selection mechanism
has been carried out to maximize the array gain with the con-
straint that the response level at one direction is precisely ad-
justed. Some properties of OPARC have been presented and
OPARC is compared in details with A2RC. Finally, simulation
results have been shown to illustrate the effectiveness of the pro-
posed OPARC method. Based on the fundamentals developed
in this paper, a further extension of OPARC to multi-point ar-
ray response control and its applications to, for example, pattern
synthesis, multi-constraint adaptive beamforming and quiescent
pattern control will be considered in [20].

APPENDIX A
PROOF OF PROPOSITION 1

For the sake of clarity, the subscript k will be omitted in
the sequel. To solve the equation (16), we take the eigenvalue
decomposition of H, i.e., H = UΛUH , where U is an unitary
matrix, Λ = Diag([λ1 , λ2 ]) with λ1 and λ2 are eigenvalues
of H. Let us define y � UHz, then (16) can be equivalently
expressed as yHΛy=0, and further λ1 |y(1)|2 + λ2 |y(2)|2 =0.

Before proceeding, it can be found that det(H) =−ρk∣∣wH
k−1a(θ0)vH

k a(θk )−wH
k−1a(θk )vH

k a(θ0)
∣∣2 ≤ 0. On this ba-

sis, by utilizing the fact that λ1λ2 = det(H) ≤ 0, we learn that
λ1 |y(1)|2 + λ2 |y(2)|2 = 0 can be solved. Let us express U as
U = [u1 1 u1 2

u2 1 u2 2
], then we have

λ1 |y(1)|2 + λ2 |y(2)|2

= λ1 |u∗
11 + u∗

21γ|2 + λ2 |u∗
12 + u∗

22γ|2

= H(1, 1) + 2� [H(1, 2)] · �(γ) − 2� [H(1, 2)] · �(γ)

+ H(2, 2)
[�2(γ) + �2(γ)

]

= 0 (67)

where we have utilized the fact that

H(1, 1) = λ1 |u11 |2 + λ2 |u12 |2 (68a)

H(1, 2) = λ1u
∗
21u11 + λ2u

∗
22u12 (68b)

H(2, 1) = λ1u
∗
11u21 + λ2u

∗
12u22 (68c)

H(2, 2) = λ1 |u21 |2 + λ2 |u22 |2 . (68d)

From (67), it is known that if H(2, 2) = 0, we have
� [H(1, 2)] · �(γ) −� [H(1, 2)] · �(γ) = −H(1, 1)/2. Other-
wise, if H(2, 2) 	= 0, (67) can be expressed as

(
�(γ)+

� [H(1, 2)]
H(2, 2)

)2

+
(
�(γ)−� [H(1, 2)]

H(2, 2)

)2

=− det(H)
H2(2, 2)
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Fig. 10. Geometrical illustration of different cases when maximizing array gain.

which implies that the trajectory of [�(γ)�(γ)]T is a circle with
the center cγ in (18) and the radius Rγ in (19). This completes
the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Since Tk−1 is assumed to be Hermitian, both ξ0 and ξk are
real-valued and one also gets ξ̃c = ξ∗c . According to (17), we
have

Hk (1, 2) = wH
k−1 [a(θk )aH(θk ) − ρka(θ0)aH(θ0)]vk = χξ∗c

where χ = ξk − ρkξ0 ∈ R. From (18), we have

cγ (1) + jcγ (2) = −χξc/Hk (2, 2). (69)

Thus,

γk,a = − (‖cγ ‖2 − Rγ ) χξc

‖cγ ‖2Hk (2, 2)
, γk,b = − (‖cγ ‖2 + Rγ ) χξc

‖cγ ‖2Hk (2, 2)
.

From (69) and both χ and Hk (2, 2) are real, we have

cγ (2)
/
cγ (1) = �(ξc)

/�(ξc). (70)

For the array gain Gk in (23) we have

Gk = |ξ∗c | · |ξ0/ξ∗c + γk | = |ξ∗c | ·
∣∣γk − d

∣∣

= |ξ∗c | ·
∥∥[�(γk ) �(γk )

]T − [�(d) �(d)
]T∥∥

2 (71)

where d = −ξ0/ξ∗c . Also,

�(d)
/�(d) = �(ξc)

/�(ξc) = cγ (2)
/
cγ (1). (72)

This shows that the origin O, the center cγ and D =
[�(d)�(d)]T are co-linear on the plane as shown in Fig. 10.
Note that in Fig. 10 we have denoted C as the center of the cir-
cle. From (71) it can be observed that Gk is a scaling of the Eu-
clidean distance between D and a point F = [�(γk ),�(γk )]T
located on the circle Cγ . From this observation, the optimal
solution to (21) can thus be obtained in a geometrical approach
below.

Without loss of generality, we first assume that�(d) 	= cγ (1),
otherwise, all γk on circle Ck will have the same Gk . In the case
of �(d) > cγ (1) ≥ 0 or �(d) < cγ (1) < 0, it can be derived
that γk,� = γk,a , i.e., when F = Fa , Gk is maximized. In fact,
these two cases can be geometrically illustrated by Fig. 10(a)
and Fig. 10(b), respectively.

Similarly, in the case of cγ (1) ≥ 0, �(d) < cγ (1) (as shown
in Fig. 10(c)), or cγ (1) < 0, �(d) > cγ (1) (as shown in

Fig. 10(d)), the two points O and D are located on the same
sides (right or left) of C. As a result, γk,� = γk,b , i.e., when
F = Fb , Gk is maximized in these two cases.

In summary, it can be concluded that if ζ > 0, γk,� = γk,a ,
otherwise, γk,� = γk,b , where ζ has been defined in (27). This
completes the proof.

APPENDIX C
PROOF OF PROPOSITION 5

It is easy to see that −1/ξk > ξ0/
(|ξc |2 − ξ0ξk

)
in (42) is

actually equivalent to

(|ξc |2 − ξ0ξk )ξk < 0. (73)

When Tk−1 ∈SN
++ , we have T−1

k−1∈SN
++ . Thus, from (24b)

ξk > 0. (74)

Let the Cholesky decomposition of T−1
k−1 be T−1

k−1 = ΞΞH ,
where Ξ is an invertible matrix. If a(θ0) 	= �a(θk ) for ∀� ∈ C
that always holds in array antenna theory, we have ΞHa(θ0) 	=
�ΞHa(θk ) for ∀� ∈ C. Then, from the Cauchy-Schwarz in-
equity we have

|ξc |2 − ξ0ξk =
∣∣(ΞHa(θk ))H(ΞHa(θ0))

∣∣2

− ∥∥ΞHa(θ0)
∥∥2

2 ·
∥∥ΞHa(θk )

∥∥2
2 < 0. (75)

Hence, from Proposition 4, we have βk,� = βk,r .
From (38), (43) and the fact that βk,� = βk,r , we have

βk,� =
|ξc | − √

ρkξ0√
ρk (ξ0ξk − |ξc |2) . (76)

This completes the proof of (49).
Furthermore, if Tk−1 ∈ SN

++ , one learns from Tk = Tk−1 +
βk,�a(θk )aH(θk ) that

Tk ∈ SN
++ ⇔ Tk−1 + βk,�a(θk )aH(θk ) ∈ SN

++ (77a)

⇔ I+βk,�T
−1/2
k−1 a(θk )aH(θk )T−1/2

k−1 ∈SN
++ (77b)

⇔ 1 + βk,�aH(θk )T−1
k−1a(θk ) > 0 (77c)

⇔ βk,� > −1/ξk (77d)

⇔ |ξc |ξk −√
ρk |ξc |2√

ρk (ξ0ξk − |ξc |2)ξk
> 0 (77e)

⇔ ρk < ξ2
k/|ξc |2 . (77f)
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This completes the proof of Proposition 5.

APPENDIX D
PROOF OF PROPOSITION 7

From the update procedure of weight vector, one gets

wk = wk−1 + γkvk

= T−1
k−1a(θ0) − βkξcT−1

k−1a(θk )/(1 + βkξk ). (78)

Then we can obtain aH(θ0)wk = ξ0 − βk |ξc |2/(1 + βkξk ) and

|wH
k a(θ0)|2 = |(ξ0ξk − |ξc |2)βk + ξ0 |2

/|1 + βkξk |2 . (79)

On the other hand, from (78) we have wH
k Tk−1 = aH(θ0) −

β∗
k ξ∗caH(θk )/(1 + β∗

k ξk ) and further get

wH
k Tk−1wk =

(
aH(θ0) − β∗

k ξ∗caH(θk )/(1 + β∗
k ξk )

)

· (T−1
k−1a(θ0) − βkξcT−1

k−1a(θk )/(1 + βkξk )
)

=
(ξ0ξk − |ξc |2)ξk |βk + 1

ξk
|2 + |ξc |2

ξk

|1 + βkξk |2 . (80)

Combining (79) and (80), we get

|wH
k a(θ0)|2

wH
k Tk−1wk

=

(
ξ0 ξk −|ξc |2

ξk

)
· R2

β
∣∣βk + 1

ξk

∣∣2 + |ξc |2
(ξ0 ξk −|ξc |2 )ξ 2

k

(81)

where we have utilized the fact that ξ0ξk − |ξc |2 > 0 (see (75)
when T−1

k−1 ∈ SN
++ ) and

∣∣βk + ξ0
ξ0 ξk −|ξc |2

∣∣ = Rβ . Obviously,

the maximization of |wH
k a(θ0)|2/(wH

k Tk−1wk ) is equivalent
to minimizing

∣∣βk + 1
ξk

∣∣. Define

f �
[−1/ξk 0

]T (82)

then we can reformulate problem (52) as

minimize
βk

‖[�(βk ) �(βk )]T − f‖2 (83a)

subject to [�(βk ) �(βk )]T ∈ Cβ . (83b)

On the other hand, substituting the constraint (40c) into Gk

and recalling the conclusion of Proposition 3, the array gain
satisfies

Gk =
∣∣aH(θ0)T−1

k a(θ0)
∣∣ (84a)

=
∣∣∣∣ξ0 − βk |ξc |2

1 + βkξk

∣∣∣∣ (84b)

=
∣∣∣∣
ξ0ξk − |ξc |2

ξk

∣∣∣∣ ·
∣∣∣∣
βk − ξ0/

(|ξc |2 − ξ0ξk

)

βk − (−1/ξk )

∣∣∣∣ (84c)

=
∣∣∣∣
ξ0ξk − |ξc |2

ξk

∣∣∣∣ ·
‖[�(βk ) �(βk )]T − cβ‖2

‖[�(βk ) �(βk )]T − f‖2
(84d)

=

∣∣ (ξ0ξk − |ξc |2
) · Rβ /ξk

∣∣
‖[�(βk ) �(βk )]T − f‖2

. (84e)

Note that (84a) comes from the intermediate result of (23),
whereas (84d) is obtained from the result of Proposition 3. Since∣∣ (ξ0ξk − |ξc |2

) · Rβ /ξk

∣∣ is a constant, from (84e), we can also
reformulate problem (40) as (83).

Consequently, if Tk−1 ∈ SN
++ , problem (40) has the same

optimal solution as the problem (52). This completes the proof.

APPENDIX E
DERIVATION OF (57)

We first show

T−1
k−1a(θt) = A(θt , θk−1 , . . . , θ1)dk (θt), ∀θt ∈ R (85)

where the first component of dk (θt) is 1.
We use induction to prove (85). When k = 1, since T0 = I,

(85) is obvious, where d1(θt) degenerates to the scalar 1.
Suppose (85) is true when k = p, i.e.,

T−1
p−1a(θs) = A(θs, θp−1 , . . . , θ1)dp(θs), ∀θs ∈ R (86)

where dp(θs) is a p × 1 vector with its first entry 1.
When k = p + 1, we want to show

T−1
p a(θr ) = A(θr , θp , . . . , θ1)dp+1(θr ), ∀θr ∈ R (87)

where dp+1(θr ) is a (p + 1) × 1 vector with its first entry 1.
To see (87), one recalls (10) with k = p, and (86), and obtains

(88) shown at the bottom of this page, where

ν = −βpaH(θp)T−1
p−1a(θr )/[1 + βpaH(θp)T−1

p−1a(θp)] (89)

dp+1(θr ) is a (p + 1) × 1 vector as shown in (90) shown at the
bottom of this page, where dp(θr )i stands for the ith element of
dp(θr ).

Then, (57) can be seen by substituting (85) with θt = θk

into (21c).

APPENDIX F
PROOF OF COROLLARY 1

In the first step of the weight vector update in the OPARC, we
have Cγ = Cμ due to the fact that T0 = I and hence H1 = Q1 .
Therefore, one gets μ1,� = γ1,a since [�(γ1,a)�(γ1,a)]T has the
minimum module among the elements in the set Cγ as shown
in Fig. 1.

T−1
p a(θr ) = T−1

p−1a(θr ) + νT−1
p−1a(θp) = A(θr , θp−1 , . . . , θ1)dp(θr ) + νA(θp , θp−1 , . . . , θ1)dp(θp)

= A(θr , θp , . . . , θ1)dp+1(θr ), ∀θr ∈ R (88)

dp+1(θr ) = [dp(θr )1 , 0,dp(θr )2 , . . . ,dp(θr )p ]T + ν [0,dp(θp)p ,dp(θr )p−1 , . . . ,dp(θr )1 ]T (90)
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1 � diag(Σ̆k ) = −(AH
k w̆k ) � bk = −

[
AH

k−1w̆k

aH(θk )w̆k

]
�
[
bk−1

μk

]
= −

[
(AH

k−1w̆k−1) � bk−1 + (μkAH
k−1a(θk )) � bk−1

aH(θk )w̆k−1/μk + ‖a(θk )‖2
2

]

=

[
1 � diag(Σ̆k−1) − (μkAH

k−1a(θk)) � bk−1

−aH(θk )w̆k−1/μk − ‖a(θk )‖2
2

]
(92)

On the other hand, substituting v1 = a(θ1) and w0 =
a(θ0) into (17) yields H1(1, 2) = (‖a(θ1)‖2

2 − ρ1‖a(θ0)‖2
2) ·

aH(θ0)a(θ1) and H1(2, 2) = ‖a(θ1)‖4
2 − ρ1 |aH(θ1)a(θ0)|2 .

Recalling (18), we obtain

cγ (1) =
−� [aH(θ0)a(θ1)] (‖a(θ1)‖2

2 − ρ1‖a(θ0)‖2
2)

‖a(θ1)‖4
2 − ρ1 |aH(θ1)a(θ0)|2 .

Meanwhile, since T0 = I, one obtains from (27) that ζ =
sign(‖a(θ1)‖2

2 − ρ1‖a(θ0)‖2
2). Finally, from (26), if ρ1 ≤

‖a(θ1)‖2
2/‖a(θ0)‖2

2 , we have γ1,� = γ1,a , otherwise, we obtain
γ1,� = γ1,b . Recalling μ1,� = γ1,a , we complete the proof.

APPENDIX G
PROOF OF (60) AND (62)

From the equivalence of (58) and (59), one gets
bk = −(I + Σ̆kAH

k Ak )−1Σ̆kAH
k a(θ0). Multiplying by I +

Σ̆kAH
k Ak to both sides from the left of this equality yields

Σ̆kAH
k (a(θ0) + Akbk ) = −bk . Since Σ̆k is a diagonal matrix

and w̆k = a(θ0) + Akbk , we obtain

Σ̆k = Diag
(−bk � (AH

k w̆k )
)
. (91)

Furthermore, as wk =wk−1 + μka(θk ), bk = [bT
k−1 μk ]T

and Ak = [Ak−1 a(θk )], we can rewrite (91) as (92) shown
at the top of this page. Consequently, the following formulation
can be obtained:

1

β̆k ,i

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

β̆k−1,i

− μkaH(θi)a(θk )
μi

, 1 ≤ i ≤ k−1

−aH(θk )w̆k−1

μk
− ‖a(θk )‖2

2 , i = k.

(93)

From (93), the powers of interferences can be clearly observed.
After some calculation, either (60) or (62) can be derived. This
completes the proof.
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