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Abstract—In this paper, the optimal and precise array response
control (OPARC) algorithm proposed in Part I of this two paper
series is extended from single point to multi-points. Two computa-
tionally attractive parameter determination approaches are pro-
vided to maximize the array gain under certain constraints. In
addition, the applications of the multi-point OPARC algorithm to
array signal processing are studied. It is applied to realize array
pattern synthesis (including the general array case and the large
array case), multi-constraint adaptive beamforming, and quies-
cent pattern control, where an innovative concept of normalized
covariance matrix loading is proposed. Finally, simulation results
are presented to validate the effectiveness and good performance
of the multi-point OPARC algorithm.

Index Terms—Array response control, adaptive array theory,
array pattern synthesis, adaptive beamforming, quiescent pattern
control.

I. INTRODUCTION

IN THE companion paper [1], optimal and precise array re-
sponse control (OPARC) algorithm was proposed and an-

alyzed. OPARC provides a new mechanism to control array
responses at a given set of angles, by simply assigning vir-
tual interference one-by-one. The optimality (in the sense of
array gain) of OPARC in each step is guaranteed. Nevertheless,
OPARC only controls one point per step and may be inefficient
if multiple points are needed to be precisely adjusted. Moreover,
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how to use the OPARC algorithm in practical cases (where real
data commonly exists) remains.

This paper first extends the OPARC algorithm from single
point response control per step to multi-point response control
per step. Note that a multi-point accurate array response con-
trol (MA2RC) algorithm has been recently developed in [2].
Nevertheless, since it is built on the basis of the accurate ar-
ray response control (A2RC) algorithm [3], the MA2RC suffers
from the similar drawbacks to A2RC, i.e., a solution is empir-
ically adopted and hence a satisfactory performance cannot be
always guaranteed as analyzed in details in [1]. In this paper,
we first carry out a careful investigation on the change rule of
the optimal beamformer when multiple virtual interferences are
simultaneously assigned. Then, a generalized methodology of
the weight vector update is observed and utilized for the real-
ization of the multi-point array response control. Similar to the
OPARC in [1], we formulate a constrained optimization problem
such that the array response levels of multiple points can be opti-
mally (in the sense of array gain) and precisely controlled. Then,
two different solvers, by either taking advantage of the OPARC
algorithm or employing the recently developed consensus alter-
nating direction method of multipliers (C-ADMM) approach in
[4], are provided to find an approximate solution of the estab-
lished optimization problem. Note that since the OPARC in [1]
only optimally controls the array response at one point in each
step, it has a closed-form solution, while this is not the case
for the multi-point OPARC in this paper. In other words, this
paper does not cover [1]. The differences between the proposed
multi-point OPARC and MA2RC are similar to those between
OPARC and A2RC as described in [1] in details. Meanwhile,
for the proposed multi-point OPARC, its applications to, such
as, array pattern synthesis, multi-constraint adaptive beamform-
ing and quiescent pattern control, are also presented as detailed
below.

Application to Array Pattern Synthesis: Determining the com-
plex weights for array elements so as to achieve a desired beam-
pattern is known as array pattern synthesis [5]–[7]. With regard
to this problem, it is expected to control the sidelobe of array
response to achieve a pencil beam pattern or to realize a shaped
beam pattern complying to a given mask. Over the past several
decades, a great number of pattern synthesis approaches have
been proposed. For instance, the classical Dolph-Chebychev
synthesis technique obtains an analytical expression for the
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weightings that optimize the compromise between beamwidth
and sidelobe level [8]. However, its application to arrays with
arbitrary geometries or nonisotropic elements is not straight-
forward. Global optimization based methods, such as genetic
algorithm (GA) [9], simulated annealing (SA) method [10] and
particle swarm optimization (PSO) method [11], are applicable
to non-uniformly spaced arrays. Nevertheless, their prohibitive
computational complexities would limit the practical use. The
approaches in [12] and [13], which are developed on the ba-
sis of the adaptive array theory [14], are applicable to arbitrary
array configurations. However, some key parameters in these
approaches are usually selected in an ad hoc way. Owing to the
recent advances in convex optimization [15], optimization meth-
ods such as convex programming [16], second-order cone pro-
gramming (SOCP) [17] and semidefinite relaxation (SDR) [18]
have been employed in pattern synthesis. Note that such kind of
approaches cannot control the beampattern precisely according
to the required specifications. In this paper, the above short-
coming is overcome by synthesizing desirable patterns with the
proposed multi-point OPARC algorithm. We start the synthesis
procedure from the quiescent pattern, and iteratively adjust the
responses of multiple angles to their desired levels. Simulation
results show that it only requires a few steps of iteration to
complete the syntheses of well-shaped beampatterns. In addi-
tion to the consideration for a general array, large array pattern
synthesis problem [19], where the existing methods consume a
large amount of computing resources or even not work at all, is
particularly discussed. We will see that the large array pattern
synthesis can be readily realized with the multi-point OPARC
algorithm, in a computationally attractive manner.

Application to Multi-constraint Adaptive Beamforming:
Adaptive beamforming plays an important role in various appli-
cation areas, since it enables us to receive a desired signal from
a particular direction while it simultaneously blocks undesirable
interferences. Multi-constraint adaptive beamforming, i.e., de-
signing an adaptive beamformer with several fixed directional
constraints, is a common strategy to improve the robustness of
the adaptive beamformer, see [20]–[22] for example. The exist-
ing methods may cause distorted beampatterns, due to their im-
perfections on model building or parameter optimization. Based
on the proposed multi-point OPARC algorithm, a new approach
to multi-constraint adaptive beamforming is presented in this
paper. We modify the traditional adaptive beamformer to make
the prescribed amplitude constraints satisfied by utilizing the
multi-point OPARC algorithm. In the proposed algorithm, the
total signal-to-interference-plus-noise ratio (SINR) (taking both
real interferences and assigned virtual interferences into consid-
eration) is maximized, and the real unexpected components can
be well rejected without leading to any undesirable pattern dis-
tortion. Inspired by this, a new concept of normalized covariance
matrix loading (NCL), which can be regarded as a generaliza-
tion of the conventional diagonal loading (DL) in [23]–[25], is
developed. Moreover, NCL is also exploited to realize quiescent
pattern control as introduced next.

Application to Quiescent Pattern Control: In brief, when an
adaptive array operates in the presence of white noise only,
the resultant adaptive beamformer is referred to as the quiescent

weight vector, and the corresponding array response is termed as
the quiescent pattern. As pointed out in [26], having overall low
sidelobes is important to adaptive arrays and how to specify a
quiescent response pattern is worthwhile investigating. Most of
the existing quiescent pattern control methods [26]–[28] are es-
tablished on the foundation of the linearly constrained minimum
variance (LCMV) framework, where the unnecessary phase con-
straints of array response are implicitly imposed. In this paper,
a simple yet effective quiescent pattern control algorithm is
proposed. We synthesize a satisfactory deterministic pattern,
i.e., the ultimate quiescent pattern, by adopting the multi-point
OPARC algorithm, and meanwhile, collect the resulting vir-
tual normalized covariance matrix (VCM) for later use. Under
the real data circumstance, the quiescent pattern control is com-
pleted by conducting a simple NCL operator to the existed VCM,
and the weight vector can be obtained accordingly.

This paper is organized as follows. The proposed multi-point
OPARC algorithm is presented in Section II. The three appli-
cations of the multi-point OPARC are discussed in Section III.
Representative experiments are carried out in Section IV and
conclusions are drawn in Section V.

Notations: Following the notations in [1], we use bold upper-
case and lower-case letters to represent matrices and vectors,
respectively. In particular, we use I to denote the identity matrix.
j �

√−1. (·)T and (·)H stand for the transpose and Hermitian
transpose, respectively. | · | denotes the absolute value and ‖ · ‖2
denotes the l2 norm. We use (g)i to stand for the ith element
of vector g. �(·) and �(·) denote the real and imaginary parts,
respectively. � represents the element-wise division operator.
We use Diag(·) to stand for the diagonal matrix with the com-
ponents of the input vector as the diagonal elements. R and C
denote the sets of all real and all complex numbers, respectively.
Finally, ∪ denotes the set union and card(·) returns the number
of elements in a set.

II. MULTI-POINT OPARC ALGORITHM

To present our multi-point OPARC algorithm, we first make
a detailed analysis on the optimal weight vector.

A. Multi-Interference Optimal Beamformer

Consider an array with N elements. According to [1], the
optimal weight vector:

wopt = T−1
n+ia(θ0) (1)

maximizes both the output signal-to-interference-plus-noise ra-
tio (SINR) and the array gain of an array system, where SINR
and array gain are defined, respectively, as [14]

SINR � σ2
s |wHa(θ0)|2
wHRn+iw

, G � |wHa(θ0)|2
wHTn+iw

(2)

where a(θ) stands for the array steering vector:

a(θ) = [g1(θ)e−jωτ1 (θ) , . . . , gN (θ)e−jωτN (θ) ]T (3)

where gn (θ) denotes the pattern of the nth element, τn (θ) is
the time-delay between the nth element and the reference point,
n = 1, . . . , N , ω denotes the operating frequency. In the above
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notations, θ0 is the beam axis, Rn+i denotes the N × N noise-
plus-interference covariance matrix, Tn+i stands for the nor-
malized covariance matrix satisfying

Tn+i =
Rn+i

σ2
n

= I +
Q∑

l=1

βla(θl)aH(θl) (4)

where βl � σ2
l /σ2

n denotes the interference-to-noise ratio
(INR), Q is the number of interferences, a(θl) is the steer-
ing vector of the lth interference, σ2

s , σ2
n and σ2

l stand for the
powers of signal, noise and the lth interference, respectively.
Note that G in (2) represents the amplification factor of the
input signal-to-noise ratio (SNR) σ2

s /σ2
n , and the criterion of ar-

ray gain maximization is adopted to achieve the optimal weight
vector.

From (1)–(2), one can see that the optimal weight vector
wopt depends on Rn+i or Tn+i , which is normally data-
dependent. For this reason, Rn+i or Tn+i may not be avail-
able if we need to design a data-independent array response
pattern L(θ, θ0) � |wHa(θ)|2/|wHa(θ0)|2 that satisfies some
specific requirements. In this case, for a given response design
task, the concept of virtual normalized noise-plus-interference
covariance matrix (VCM) was introduced in [1]. Moreover, it
was shown in [1] that a VCM can be constructed by assigning
suitable virtual interferences one-by-one. In this paper, for a
given response control task, we assign multiple virtual interfer-
ences (instead of a single virtual interference) at one step, and
study how the optimal weight vector in (1) changes.

We use induction to describe the problem. Suppose that we
have already assigned interferences for (k − 1) times, the total
number of interferences is accumulated as Qk−1 and Tk−1 de-
notes the total VCM up to the (k − 1)th step. The corresponding
optimal weight vector at the (k − 1)th step is given by

wk−1 = T−1
k−1a(θ0) (5)

where the subscript (·)opt has been omitted for notational sim-
plicity. Then, we carry out the kth step by assigning Mk in-
terferences from directions θk,m with INR to be βk,m , m =
1, . . . ,Mk , where θk,m are renamed from those θl in (4). Then,

Tk = Tk−1 +
Mk∑

m=1

βk,ma(θk,m )aH(θk,m )

= Tk−1 + AkΣkAH
k (6)

where

Ak = [a(θk,1), . . . ,a(θk,Mk
)] (7)

Σk = Diag([βk,1 , . . . , βk,Mk
]) (8)

and Tk is the resulting VCM after implementing the kth step of
the interference assigning. Clearly, if Mk = 1, (6) degenerates
to Eqn. (9) of [1], and the related discussions return to our

previous work in [1]. To make the discussion meaningful, the
matrix Ak in this paper is assumed to have a full column rank.

By applying the Generalized Woodbury Lemma [29] to (6),
we obtain that

T−1
k = T−1

k−1

− T−1
k−1Ak

(
I + ΣkAH

k T−1
k−1Ak

)−1 ΣkAH
k T−1

k−1 . (9)

Accordingly, the obtained optimal weight vector satisfies

wk = T−1
k a(θ0) = wk−1 + T−1

k−1Akhk (10)

where hk ∈ CMk is

hk = − (
I + ΣkAH

k T−1
k−1Ak

)−1 ΣkAH
k T−1

k−1a(θ0). (11)

As shown in (10), the current optimal weight wk is obtained by
making a modification to the previous weight wk−1 .

Recalling the adaptive array theory, the weight wk performs
optimally in maximizing the array gain Gk defined as

Gk � |wH
k a(θ0)|2/|wH

k Tkwk | (12)

although the response levels at θk,m , m = 1, . . . ,Mk , may not
reach their expected values. To precisely adjust the array re-
sponses of θk,m to their desired levels ρk,m , the INRs βk,m ,
m = 1, . . . ,Mk , or equivalently the diagonal matrix Σk , should
be carefully selected. In the meantime, the array gain Gk in (12)
should be maximized. Note also that hk in (11) acts as a mapping
of Σk , and we can express Σk by hk as

Σk = Diag
(−hk � (

AH
k T−1

k−1 (a(θ0) + Akhk )
))

. (13)

From (11) and (13), one can see that Σk and hk are one-one
mapping. Therefore, the multi-point optimal and precise array
response control (OPARC) can be realized by either finding a
suitable Σk or selecting an appropriate hk .

B. Multi-Point OPARC Problem Formulation

Let us first formulate the multi-point OPARC by optimizing
Σk as:

max
Σk

Gk = |wH
k a(θ0)|2/|wH

k Tkwk | (14a)

subject to L(θk,m , θ0) = ρk,m , m = 1, . . . ,Mk (14b)

wk = wk−1,� + T−1
k−1Akhk (14c)

where wk−1,� is the resultant weight vector of the (k − 1)th step
(we use the star symbol to indicate it as the ultimate selection of
wk−1), the vector hk is given by (11). Once the optimal Σk,� has
been obtained, we can express the ultimate weight vector wk,�

as (15) shown at the bottom of this page. To find the solution of
problem (14), an iterative method is first provided below.

wk,� = wk−1,� − T−1
k−1Ak

(
I + Σk,�AH

k T−1
k−1Ak

)−1 Σk,�AH
k T−1

k−1a(θ0) (15)
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Algorithm 1: Iterative Approach to Problem (14).

1: give a(θ0), θk,m , ρk,m , m = 1, . . . ,Mk , and Ak , set
βε > 0, βMAX > βε , Ξ = Tk−1 , Σk = 0

2: while βMAX > βε do
3: for m = 1, . . . ,Mk do
4: calculate βk,m,� from Eqn. (42) of [1], by

setting L(θk,m , θ0) = ρk,m

5: update VCM Ξ = Ξ + βk,m,�a(θk,m )aH(θk,m )
6: end for
7: update Σk as Σk = Σk + Diag([βk,1,� , . . . ,

βk,Mk ,� ])
8: obtain βMAX = max

1≤m≤Mk

|βk,m,� |
9: end while

10: obtain Σk,� = Σk

C. Iterative Approach

The OPARC algorithm, developed in the companion paper
[1], is able to optimally and precisely adjust one-point response
level at a time. Thus, we may apply it to the Mk -point OPARC
problem (14) as follows. For a fixed k > 0, we apply the OPARC
algorithm for Mk steps. In the mth step, OPARC is to realize
L(θk,m , θ0) = ρk,m , m = 1, . . . ,Mk . Unfortunately, OPARC
brings inevitable pattern variations on the previous controlled
angles as we have discussed in [1]. More specifically, the re-
sponse levels of θk,i , i = 1, . . . , m − 1, vary after accurately
controlling the response level of θk,m to its desired level ρk,m ,
2 ≤ m ≤ Mk . To reduce the undesirable pattern variations on
the pre-adjusted angles, we propose to iteratively apply the Mk -
point OPARC for a number of times, until a certain termination
criterion is met. A temporary variable Ξ = Tk−1 and Σk = 0
are taken as the initializations in the first iteration. Then, in
each iteration, an Mk -step OPARC is carried out. More specif-
ically, in the mth step, we adjust the response level of θk,m

to be ρk,m , by calculating the INR of the newly assigned vir-
tual interference at θk,m , denoted as βk,m,� , m = 1, . . . ,Mk ,
from Eqn. (42) of [1], and then update the associated VCM as
Ξ = Ξ + βk,m,�a(θk,m )aH(θk,m ). Once an iteration, i.e., an
Mk -step OPARC, is completed, βk,m,� is added to the mth di-
agonal element of Σk , and then we set the resulting Ξ as the
initial VCM in the next iteration. Note that T0 = I.

Naturally, whether the response levels of the adjusted angles
θk,m , m = 1, . . . , Mk , are close enough to their desired levels
can be a criterion to terminate the iteration of OPARC. How-
ever, this strategy needs to calculate all the intermediate weight
vectors that may be computationally inefficient. To improve the
computational efficiency, we propose to terminate the iteration
of OPARC by examining whether the magnitudes of INRs of
the newly assigned virtual interferences approximate enough to
zero, since there is no need to assign virtual interferences if their
values are small enough.

Finally, we summarize the above iterative solver of problem
(14) in Algorithm 1, where βε stands for a small tolerance
parameter. Note that βk,m,� in Algorithm 1 is calculated with
Eqn. (42) of [1]. In addition, we can express the ultimate Σk,�

as

Σk,� = Diag([β̄k ,1,� , . . . , β̄k ,Mk ,� ]) (16)

where β̄k ,m ,� represents the total INR of the virtual interference
assigned at θk,m in the kth step, and equals to the summation of
all βk,m,� ’s of different iterations for a fixed m = 1, . . . , Mk . As
discussed earlier, once the optimal Σk,� has been obtained, we
can use Σk,� to obtain the VCM Tk by Eqn. (6), update hk in
(11) and (14c), and calculate wk,� by Eqn. (15). It shall be noted
that an inverse of normalized covariance matrix is indispensable
in determining βk,m,� ’s by Eqn. (42) of [1]. This may lead to a
high cost in memory or/and computation especially for a large
array, although it may not need a large number of iterations.

D. C-ADMM Approach

We next propose another approach to solve problem (14). We
first reformulate the original problem (14) as a quadratically
constrained quadratic program (QCQP) problem. Then, the re-
cently developed consensus-ADMM (C-ADMM) [4] approach
is employed to find its solution.

1) Problem Reformulation: Since hk is a one-one mapping
of Σk , we can formulate the multi-point OPARC, i.e., problem
(14), by finding hk as

max
hk ∈CM k

Gk = |wH
k a(θ0)|2/|wH

k Tkwk | (17a)

subject to L(θk,m , θ0) = ρk,m , m = 1, . . . ,Mk (17b)

wk = wk−1,� + T−1
k−1Akhk . (17c)

We substitute the constraint (17c) into Gk and obtain

G2
k =

∣∣aH(θ0)(wk−1,� + T−1
k−1Akhk )

∣∣2

= −hH
k C̃hk + 2� (

c̃Hhk

)
+ |aH(θ0)wk−1,� |2 (18)

where wk = T−1
k a(θ0) is used, C̃ and c̃ are defined as

C̃ � −(T−1
k−1Ak )Ha(θ0)aH(θ0)T−1

k−1Ak ∈ CMk×Mk (19a)

c̃ � (T−1
k−1Ak )Ha(θ0)aH(θ0)wk−1,� ∈ CMk . (19b)

Since |aH(θ0)wk−1,� |2 is a constant, the maximization of Gk is
thus equivalent to the minimization of hH

k C̃hk − 2� (c̃Hhk ).
On the other hand, recalling the expression of L(θ, θ0), we

can rewrite the constraint (17b) as

wH
k Sk,mwk = 0, m = 1, . . . , Mk (20)

where Sk,m = a(θk,m )aH(θk,m ) − ρk,ma(θ0)aH(θ0). Substi-
tuting the constraint (17c) into (20), we have

hH
k D̃mhk − 2�(d̃H

mhk ) = αm , m = 1, . . . ,Mk (21)

where

D̃m = (T−1
k−1Ak )HSk,mT−1

k−1Ak ∈ CMk×Mk (22a)

d̃m = −(T−1
k−1Ak )HSk,mwk−1,� ∈ CMk (22b)

αm = −wH
k−1,�Sk,mwk−1,� ∈ R. (22c)
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Thus, problem (17) can be reformulated as

min
hk

hH
k C̃hk − 2� (

c̃Hhk

)
(23a)

subject to hH
k D̃mhk − 2�(d̃H

mhk ) = αm

m = 1, . . . ,Mk . (23b)

In the sequel, we adopt the newly developed C-ADMM ap-
proach [4] to solve problem (23).

2) C-ADMM Solver: We first convert (23) into its real do-
main as

min
z

zTCz − 2cTz (24a)

subject to zTDmz − 2dT
mz = αm

m = 1, . . . ,Mk (24b)

where

z =
[�(hT

k ) �(hT
k )

]T ∈ R2Mk (25a)

c =
[�(c̃T) �(c̃T)

]T ∈ R2Mk (25b)

dm =
[
�(d̃T

m ) �(d̃T
m )

]T ∈ R2Mk (25c)

C =

[
�(C̃) −�(C̃)
�(C̃) �(C̃)

]
∈ R2Mk ×2Mk (25d)

Dm =

[
�(D̃m ) −�(D̃m )
�(D̃m ) �(D̃m )

]
∈ R2Mk×2Mk . (25e)

To tackle (24), we introduce the auxiliary variable vectors
pm , m = 1, . . . , Mk , and then formulate (24) as

min
z,{pm }M k

m =1

zTCz − 2cTz (26a)

subject to pm = z (26b)

pT
mDmpm − 2dT

mpm = αm

m = 1, . . . ,Mk . (26c)

Note that the non-convex constraint in problem (26) is only
imposed on pm and not related to z. Moreover, for any
given m = 1, . . . ,Mk , the nonconvex-constraint, i.e., (26c), is a
QCQP with only one constraint (QCQP-1), which can be easily
solved as pointed out in [4]. Thus, the newly formulated problem
(26) simplifies the original problem (24) to solve.

To see the details, we first devise the augmented Lagrangian
by ignoring the constraint (26c):

Lη (z,p,λ) = zTCz − 2cTz

+
Mk∑

i=1

λT
m (z − pm ) +

Mk∑

i=1

η

2
‖z − pm‖2

2 (27)

where η > 0 is the penalty parameter, λm ∈ R2Mk are Lagrange
multiplier vectors. Note that the augmented Lagrangian (27) acts
as the (unaugmented) Lagrangian associated with the following

problem:

min
z,{pm }M k

m =1

zTCz − 2cTz +
Mk∑

i=1

η

2
‖z − pm‖2

2 (28a)

subject to pm = z, m = 1, . . . ,Mk (28b)

which is equivalent to problem (26) in the absence of the con-
straint (26c), since for any feasible z and pm , m = 1, . . . , Mk ,
the added term, i.e., the last term in (28a), to the objective func-
tion is zero. As mentioned in [30], the augmented Lagrangian
brings robustness to the dual ascent method adopted later.

Since the constraints (26c) are imposed on pm and not related
to z, they only play roles in finding pm , m = 1, . . . ,Mk . For
this reason, we don’t include (26c) in the above augmented La-
grangian intentionally. Instead, we take the constraints in (26c)
into consideration when minimizing Lη (z,p,λ) as shown next.

The alternating direction method of multipliers (ADMM)
[30], which is an operator splitting algorithm originally devised
to solve convex optimization problems, has been explored as a
heuristic method to solve non-convex problems [4]. Following
the decomposition-coordination procedure of ADMM in [30],
we can determine {z,pm ,λ} via the alternative and iterative
steps below.

Step 1: Update z

z(t + 1) = arg min
z

Lη (z,p(t),λ(t))

= arg min
z

zT
(
C +

ηMk

2
I
)

z − 2gT(t + 1)z

=
(
C +

ηMk

2
I
)−1

g(t + 1) (29)

where g(t + 1) = c − (1/2)
∑Mk

m=1(λm (t) − ηpm (t)).
Step 2: Update p
For m = 1, . . . , Mk , we update the vector pm as

pm (t + 1) = arg min
pm

Lη (z(t + 1),p,λ(t))

= arg min
pm

ηpT
mpm − 2(ηz(t + 1) + λm (t))Tpm

= arg min
pm

‖pm − ζm (t + 1)‖2
2 (30a)

subject to pT
mDmpm − 2dT

mpm = αm (30b)

where ζm (t + 1) = z(t + 1) + (1/η)λm (t). Since the above
problem is QCQP-1 which is equivalent to solving a polynomial
as mentioned in [4], the bisection or Newtons method can be
adopted to find its (approximate) solution, see [4] and [31] for
reference.

Step 3: Update λ
For m = 1, . . . , Mk , we update the vector λm as

λm (t + 1) = λm (t) + η(z(t + 1) − pm (t + 1)). (31)

The above steps 1 to 3 are repeated until a stopping criterion
is reached, e.g., a maximum iteration number is attained and/or

δ > δMAX � max
1≤m≤Mk

‖z(t + 1) − pm (t + 1)‖2 (32)

where δ > 0 is a small tolerance parameter.
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Algorithm 2: C-ADMM Approach to Problem (14).

1: give a(θ0), Tk−1 , wk−1,� = T−1
k−1a(θ0), θk,m , ρk,m ,

m = 1, . . . ,Mk , and Ak , obtain c, C, dm , Dm from
(25), initialize pm , m = 1, . . . ,Mk , by (34), set
δMAX > δ > 0 and η > 0

2: while δMAX > δ do
3: update z by (29)
4: update pm , m = 1, . . . , Mk , by (30)
5: update λm , m = 1, . . . ,Mk , by (31)
6: calculate δMAX by (32)
7: end while
8: obtain z� = z
9: obtain hk,� by (25a)

3) Initialization of C-ADMM: Note that due to the non-
convexity of problem (26), typical convergence results on
ADMM do not apply and the ultimate z is not guaranteed to
be optimal. Nevertheless, an appropriate initialization makes
the above iterative algorithm [4] work well and even converge
to a stationary point. Following [4], we initialize pm as

pm =
[�(p̃T

m ) �(p̃T
m )

]T
, m = 1, . . . , Mk (33)

where

p̃m = [0, . . . , 0︸ ︷︷ ︸
m−1

, γm,� , 0, . . . , 0]T ∈ CMk . (34)

In (34), γm,� is obtained by the OPARC algorithm and satisfies
∣∣(wk−1,� + γm,�T−1

k−1a(θk,m ))Ha(θk,m )
∣∣2

∣∣(wk−1,� + γm,�T−1
k−1a(θk,m ))Ha(θ0)

∣∣2 = ρk,m . (35)

It can be verified that, the constraints (26c) can be satisfied if
the initial settings pm , m = 1, . . . ,Mk , take (33). This makes
it easier to find an approximate solution of problem (26).

Once the solution z� has been obtained, we can reconstruct
hk,� by (25a) and obtain wk,� as

wk,� = wk−1,� + T−1
k−1Akhk,� . (36)

The INRs of the newly assigned virtual interferences can by
calculated via

Σk,� = Diag
(−hk,� �

(
AH

k T−1
k−1 (a(θ0) + Akhk,�)

))
. (37)

To make the above procedure clear, we summarize the C-
ADMM approach to solve problem (14) in Algorithm 2. No-
tice from [4] that the C-ADMM approach is memory-efficient
and can be implemented in a parallelized or distributed manner.
Thus, for a large array, the C-ADMM approach in Algorithm 2
may be a better choice to solve problem (14) compared to the
iterative approach in Algorithm 1, although more iterations may
be needed.

E. Update of Covariance Matrix

Similar to the OPARC algorithm, the VCM Tk also needs to
be renewed so as to facilitate the next execution of multi-point

Algorithm 3: Multi-point OPARC Algorithm.

1: give a(θ0), Tk−1 and the weight vector wk−1,� =
T−1

k−1a(θ0), prescribe the angle θk,m and the
corresponding desired level ρk,m , m = 1, . . . ,Mk

2: calculate Σk,� or hk,� using Algorithm 1 or Algorithm 2
3: obtain Tk by (38) and calculate wk,� by (15) or (36)

OPARC. From the above discussions, Tk is updated as

Tk = Tk−1 + AkΣk,�AH
k . (38)

Accordingly, the weight vector is

wk,� = T−1
k a(θ0). (39)

This completes the procedure of multi-point OPARC. Finally,
we describe the steps of multi-point OPARC in Algorithm 3.

Note that in our proposed multi-point OPARC algorithm,
we carry out the parameter determination in a subspace with
dimension Mk , not in the whole space of dimension N . The
benefit is the reduced amount of calculation. In addition, one
can see that at most Mmax = N − 1 points can be precisely
controlled, due to the limited degrees of freedom in problem
(14) or (17).

As a remark, the differences between the recent MA2RC in [2]
and the proposed multi-point OPARC in this paper are similar
to those between A2RC and OPARC described in [1] in details.

F. Computational Complexities

We now analyze the computational complexities of the pro-
posed algorithms and compare them with the existing MA2RC
algorithm in [2]. Note that two algorithms have been presented
to solve the problem (14). In the iterative approach (see Algo-
rithm 1), an Mk -step OPARC is carried out in each iteration,
and the main computational cost lies in the calculation of T−1

k−1 ,
which takes a computational complexity of O(N 3). For the C-
ADMM approach (see Algorithm 2), the main computational
costs are the updates of z and pm ’s, m = 1, . . . , Mk , in (29)
and (30), respectively. The update of z requires a computa-
tional complexity of O(M 3

k ). To update pm ’s in (30), the eigen-
decompositions of Dm ’s, m = 1, . . . , Mk , are necessary [4]
and the total computational complexity is O(M 4

k ). Therefore,
the computational complexities of the iterative approach and
the C-ADMM approach are O(N 3) and O(M 4

k ), respectively,
in each iteration step. In addition, the C-ADMM approach can
be implemented in parallel/distributed manner [4], which can
further increase the computational efficiency. For the MA2RC
algorithm in [2], its computational complexity is O(MkN 3),
which is greater than those of the proposed algorithms.

G. Convergence Properties

In this subsection, convergence properties of the proposed
algorithms are provided. We have presented two approaches to
solve the problem (14). For the first approach (see Algorithm 1),
we substitute the constraint (14c) into (14a) and reformulate the
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problem (14) as

min
Σk

hH
k C̃hk − 2� (

c̃Hhk

)
(40a)

subject to L(θk,m , θ0) = ρk,m , m = 1, . . . ,Mk (40b)

where hk is a mapping of Σk as shown in (11), C̃ and c̃ have
been given in (19). The above problem (40) can be further
transformed as the following un-constrained one:

min
βk , 1 ,...,βk , M k

f(βk,1 , . . . , βk,Mk
) (41)

where

f(βk,1 , . . . , βk,Mk
) � hH

k C̃hk − 2� (
c̃Hhk

)

+
Mk∑

m=1

ς (L(θk,m , θ0) − ρk,m ) (42)

with ς(·) denoting the penalty function satisfying

ς(x) =
{

0, if x = 0
ν, if x 
= 0 (43)

where ν is a large enough constant. Recalling the first approach,
denote the resulting βk,m,� (in Line 4 of Algorithm 1) of the rth

step as β
(r)
k,m,� , one knows that β

(r)
k,m,� can make L(θk,m , θ0) =

ρk,m satisfied. Thus, it’s not hard to learn that β
(r)
k,m,� is actually

the optimal value as

β
(r)
k,m,� =arg min

β
f(β(r)

k,1 , . . ., β
(r)
k,m−1 , β, β

(r−1)
k,m+1 , . . ., β

(r−1)
k,Mk

).

This indicates that the first approach is essentially a block coor-
dinate descent (BCD) method [32], in which one block variable
(or few blocks of variables) is optimized at each iteration while
holding the remaining variables fixed. Although the function f
in (42) is non-convex and non-differentiable, we can know from
[33] that the sequence {(β(r)

k,1,� , . . . , β
(r)
k,Mk ,�)}r=0,1,... (gener-

ated by the BCD method) converges to a stationary point of
f , provided that the cyclic rule is used. In Algorithm 1, we
cycle through all coordinates or variables sequentially. This is
the cheapest coordinate selection strategy and it satisfies the
cyclic rule presented in [33]. Therefore, we know that the first
approach, i.e., Algorithm 1, will lead to a stationary point.

For the second approach (see Algorithm 2), it falls into the C-
ADMM framework, which provides a universal method to solve
a general QCQP. The convergence properties of C-ADMM ap-
proach have been presented in [4]. Following the result obtained
in [4], we know that if

lim
t→+∞ (pm (t) − z(t)) = 0, ∀m = 1, . . . ,Mk (44)

and

lim
t→+∞ (z(t + 1) − z(t)) = 0 (45)

then any limit point of {z(t)} is a stationary point of problem
(23), and the corresponding Σk will be a stationary point of
the original problem (14). Moreover, as mentioned in [4], an
appropriate initialization is important for the convergence of
C-ADMM. It has been found empirically in [4] that a feasible

initialization point makes C-ADMM work well in most cases,
see the selection of (33) for our problem.

In addition, it should be emphasized that the problem (14) is
a QCQP, which is in general NP-hard [4] under normal circum-
stances. Therefore, the proposed two approaches in Algorithm 1
and Algorithm 2 may provide a sub-optimal solution, which may
not be globally optimal. Nevertheless, the proposed algorithms
work well and have satisfactory performance improvement in
the applications as presented next.

III. APPLICATIONS OF MULTI-POINT OPARC

In this section, we present three applications of multi-point
OPARC to array signal processing.

A. Array Pattern Synthesis

Given the beam axis θ0 , the problem of array pattern synthe-
sis is to find an appropriate N × 1 weight vector that makes the
response L(θ, θ0) meet some specific requirements. For sim-
plicity, we denote the desired pattern as Ld(θ). Basically, the
proposed algorithm herein shares a similar concept of pattern
synthesis using A2RC in [3]. However, it is able to significantly
reduce the number of iterations and improve the performance.

1) General Case: Generally, the array pattern synthesis can
be started by setting k = 0 and the initial weight as w0,� =
a(θ0). For k > 0, multiple directions are selected by comparing
Lk−1(θ, θ0):

Lk−1(θ, θ0) � |wH
k−1a(θ)|2/|wH

k−1a(θ0)|2 (46)

with the desired pattern Ld(θ) as follows. These angles can be in
either the sidelobe region or the mainlobe region. For sidelobe
synthesis, we only choose the peak angles in the set

Ωk,S =
{
θ
∣∣Lk−1(θ, θ0) > Lk−1(θ − ε, θ0) and

Lk−1(θ, θ0) > Lk−1(θ + ε, θ0), θ ∈ ΩS } (47)

where ε is a small positive quantity, ΩS denotes the sidelobe
sector of the desired pattern. Different from the angle selection
method in A2RC where the chosen peak angles have larger
response levels than their desired values, a selected peak angle in
set Ωk,S may have a less response level than its desired one. For
mainlobe synthesis, some discrete angles where the responses
deviate considerably from the desired ones are chosen, and we
denote the set of selected angles in the mainlobe region as Ωk,M .
Then, we take:

Ωk = Ωk,S ∪ Ωk,M � {θk,1 , . . . , θk,Mk
} (48)

where Mk = card(Ωk ). The multi-point OPARC algorithm can
thus be applied to adjust the corresponding responses of angles
θk,m to their desired values ρk,m = Ld(θk,m ), m = 1, . . . , Mk ,
and the current response pattern Lk (θ, θ0) can be obtained by
using the resulting weight of multi-point OPARC. Then, set
k = k + 1 and repeat the above process until the response is
satisfactorily synthesized. Note that the above iteration proce-
dure is different from that in Section II-C where k is fixed and
an internal iteration within the kth step is conducted. To sum-
marize, we describe the multi-point OPARC based array pattern
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synthesis algorithm in Algorithm 4. As mentioned earlier, Ωk

is forced to satisfy card(Ωk ) < N . Otherwise, we can simply
reduce card(Ωk ) by modifying Ωk similar to what is done next.

2) Particular Consideration for Large Arrays: As aforemen-
tioned, the proposed multi-point OPARC algorithm operates in
an Mk -dimensional subspace of the original N -dimensional
space. This provides us an effective strategy to pattern synthe-
sis for large arrays, where the traditional approaches may not
work well or require extensive computation due to the large
dimension.

More specifically, for a large array and a pre-determined angle
set Ωk (whose cardinality normally approaches to N ) in (48),
we construct a new angle set Θk as

Θk =
{
θ̄k ,1 , θ̄k ,2 , . . . , θ̄k ,Ck

}
(49)

where Ck is a prescribed number that is much smaller than N ,
θ̄k ,c , c = 1, . . . , Ck , is the cth element of the vector:

Sort(Ωk ) ∈ Rcard(Ωk ) (50)

where Sort(Ωk ) re-arranges the elements of Ωk in the following
way: the larger |Lk−1(θ̄, θ0) − Ld(θ̄)| for θ̄ ∈ Ωk is, the smaller
index of θ̄ in Sort(Ωk ) is, which makes θ̄ more likely to be
chosen as an element in the angle set Θk in (49). The reason for
this is that we expect to reduce the overall difference between
the resulting pattern and the desired one.

Once the new angle set Θk is obtained, the multi-point
OPARC algorithm can be applied to realize Lk (θ̄, θ0) = Ld(θ̄)
for θ̄ ∈ Θk . Then, set k = k + 1 and repeat the above process
until the response is satisfactorily synthesized, and the cardi-
nality of set Θk , i.e., Ck , can be flexibly varied with the itera-
tion number k. Finally, the above-described large-array pattern
synthesis can be readily realized via Algorithm 4, by simply
replacing Ωk in the 4th line of Algorithm 4 with the new angle
set Θk in (49).

Since the above proposed algorithm, in either the general case
or the large-array scenario, iteratively adjusts the responses of
sidelobe peaks, it is able to make all the sidelobe peaks align with
the desired values. Thus, all the sidelobe responses can be well
controlled to be lower than the given thresholds, and a satisfac-
tory sidelobe shape can be well maintained. Nevertheless, array
pattern synthesis works in a data-independent way, the resulting
weight or its corresponding beampattern is lack of adaptivity in
suppressing undesirable interference and noise, which can be
well rejected by the adaptive beamformer as discussed next.

B. Multi-Constraint Adaptive Beamforming

The linearly constrained minimum variance (LCMV) beam-
former is commonly used to enhance the robustness of array
systems [20]–[22]. In LCMV beamformer, several linear con-
straints are imposed when minimizing the output variance, i.e.,

min
w

wHRn+iw (51a)

subject to CHw = g (51b)

where C is the constraint matrix that consists of D spatial steer-
ing vectors corresponding to the D constrained directions θd ,

Algorithm 4: Multi-point OPARC based Array Pattern
Synthesis Algorithm.

1: give Ld(θ), w0,� = a(θ0), set k = 1, T0 = I, ε > 0
2: while 1 do
3: determine Ωk from (48)
4: apply multi-point OPARC algorithm to realize

Lk (θ, θ0) = Ld(θ) (θ ∈ Ωk ), update wk,� and Tk

5: if Lk (θ, θ0) meets the requirement then
6: break
7: end if
8: set k = k + 1
9: end while

10: output wk,� and Lk (θ, θ0)

d = 0, . . . , D − 1, i.e., C = [a(θ0),a(θ1), . . . ,a(θD−1)], g is
a prescribed D-dimensional vector usually satisfying (g)1 = 1.
The solution of problem (51) is given by

wLCMV = R−1
n+iC(CHR−1

n+iC)−1g. (52)

From (51b), we can clearly see that both the amplitude and the
phase of the array output, i.e., wHa(θ), have been strictly con-
strained at θd , d = 0, . . . , D − 1. As a matter of fact, a less re-
strictive quadratically constrained minimum variance (QCMV)
beamformer should be formulated by removing the unnecessary
phase constraints, i.e.,

min
w

wHRn+iw (53a)

subject to |(CHw)d |2 = |(g)d |2 , d = 1, . . . , D. (53b)

Note that in this subsection the variable d is an index and
does not mean “desired” as used previously. Comparing to the
QCMV in (53), we can see that the LCMV beamformer in (51)
strictly limits the optimization of the weight vector to a smaller
space, although it has a closed-form solution. It, thus, may cause
the output SINR of LCMV beamformer to suffer from a loss,
and the resulting pattern may be distorted.

We adopt the multi-point OPARC algorithm to solve the
QCMV problem (53), in the hope that the resulting output SINR
can be improved (comparing to LCMV). If D = 1, i.e., one con-
straint |aH(θ0)w|2 = 1 is imposed in (53b), the optimal solution
of (53) is given by

w =
R−1

n+ia(θ0)
aH(θ0)R−1

n+ia(θ0)
. (54)

If D > 1, based on the first constraint that |aH(θ0)w|2 = 1,
we have L(θd−1 , θ0) = |wHa(θd−1)|2 in (53b). Then, the addi-
tional (D − 1) constraints can be taken into account by imposing
the following constraints:

L(θd−1 , θ0) = |(g)d |2 , d = 2, . . . , D. (55)

Then, the problem becomes how to realize the above described
multi-point response control, starting from the optimal weight
vector in (54). To apply the multi-point OPARC algorithm, we
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Algorithm 5: Multi-point OPARC based Multi-constraint
Adaptive Beamforming Algorithm.

1: give interference number Jr , constraint matrix C and
vector g, estimate R̂n+i and σ̂2

n by (57) and (58),
respectively, calculate Tn+i = R̂n+i/σ̂2

n and
w0 = T−1

n+ia(θ0)
2: apply multi-point OPARC algorithm to realize

L(θd−1 , θ0) = |(g)d |2 , d = 2, . . . , D, by setting Tn+i

and w0 as the initial VCM and the initial weight vector,
respectively, to obtain wQC

rewrite w in (54) as

w =
1

σ2
naH(θ0)R−1

n+ia(θ0)
T−1

n+ia(θ0) � cw0 (56)

where c is a constant satisfying c = (σ2
naH(θ0)R−1

n+ia(θ0))−1 ,
Tn+i and w0 = T−1

n+ia(θ0) act as the initial VCM in (4) and
the initial weight vector in multi-point OPARC, respectively.
Then, a multi-point OPARC procedure can be applied to fulfill
the response requirement described in (55), and the ultimate
weight vector of QCMV (denoted as wQC ) can be obtained
accordingly.

Note that in practical applications, Rn+i can be estimated
from data x(t):

R̂n+i =
1
T

T∑

t=1

x(t)xH(t) (57)

where T is the number of snapshots. In addition, σ2
n can be

estimated by [34]

σ̂2
n =

1
N − Jr

N∑

n=J +1

λn (58)

where Jr is the number of interferences, λ1 ≥ λ2 ≥ · · · ≥ λN

are eigenvalues of R̂n+i . Replacing Rn+i and σ2
n with R̂n+i

and σ̂2
n , respectively, we have summarized the proposed algo-

rithm in Algorithm 5.
To have a better understanding, we denote the corresponding

VCM of wQC as TQC . Recalling the property (39) of multi-
point OPARC, wQC and TQC satisfy

wQC = T−1
QCa(θ0). (59)

We can see that the obtained weight wQC minimizes the to-
tal variance wHTQCw with the constraints (53b), rather than
minimizing wHTn+iw or its equivalent term wHRn+iw (for
a fixed σ2

n ) in (53a). Nevertheless, we know from Proposition 7
of the companion paper [1] that the obtained weight of OPARC

also minimizes the variance at the previous step. Thus, wQC is
the optimal solution of problem (53) for the special case when
D = 2, i.e., only one extra constraint is imposed besides the
constraint |aH(θ0)w|2 = 1. In addition, the obtained wQC of-
fers the optimal solution of problem (53) if we impose null
constraint at θd−1 , d = 2, . . . , D, based on the following argu-
ment. In this case, we set |(g)d |2 = 0, d = 2, . . . , D, and thus
obtain (60) shown at the bottom of this page, where we have
used the fact that

|wH
QCa(θd−1)|2

|wH
QCa(θ0)|2 = |(g)d |2 = 0, d = 2, . . . , D (61)

and

TQC = Tn+i +
D∑

d=2

βd−1a(θd−1)aH(θd−1) (62)

with βd−1 denoting the INR of the assigned virtual interfer-
ence at θd−1 . From (60) we know that wQC also minimizes
wHRn+iw. The optimality (in the sense of output SINR) of the
proposed algorithm is guaranteed in the above two scenarios.
Otherwise, the proposed algorithm performs better than LCMV
algorithm in most cases as we shall see from the simulations
later.

Moreover, (59) and (62) indicate that the resulting weight
vector wQC is obtained by making a normalized covariance
matrix loading (NCL), which can be regarded as a generalization
of the diagonal loading (DL) in [23]–[25], on the initial Tn+i .
The loading quantity is precisely determined by multi-point
OPARC algorithm as

Δ =
D∑

d=2

βd−1a(θd−1)aH(θd−1). (63)

Recalling Eqn. (42) of [1], one learns in OPARC that the INR of
a newly assigned virtual interference depends on the previous
normalized covariance matrix and also contributes to the current
one. Then, revisiting Algorithm 1, where OPARC is iteratively
applied, and Eqn. (16), one can see that the resulting βd−1 ,
d = 2, . . . , D, depend on the initial Tn+i . Thus, the loading
quantity Δ in (63) is related to the given constraints in (53b)
and also the real data.

Note that the above-described multi-constraint adaptive
beamforming algorithm improves the robustness of array sys-
tems while blocking the unexpected interference and noise. Our
algorithm removes the unnecessary phase constraints on the
beamformer output and can make the prescribed amplitude con-
straints satisfied. This is not true for the traditional adaptive
array approaches, such as, generalized sidelobe cancellation
(GSC) technique [35] and the minimum variance distortionless

wH
QCTQCwQC = wH

QC

(
Tn+i +

D∑

d=2

βd−1a(θd−1)aH(θd−1)

)
wQC = wH

QCTn+iwQC + |wH
QCa(θ0)|2

(∑D

d=2
βd−1 |(g)d |2

)

︸ ︷︷ ︸
=0

= wH
QCTn+iwQC =

wH
QCRn+iwQC

σ2
n

(60)
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response (MVDR) beamformer [14], which can be seen as an
equivalent and a simplified version of the LCMV beamformer,
respectively. However, different from the method in the preced-
ing subsection where the sidelobe peaks can be controlled itera-
tively, the algorithm in this subsection only has constraints on the
response levels of several pre-assigned angles θ0 , θ1 , . . . , θD−1 .
It cannot control/guarantee an overall sidelobe pattern.

C. Quiescent Pattern Control

In adaptive beamforming, weight vector is designed in a data-
dependent manner. However, the traditional adaptive beamform-
ing methods usually yield a beampattern with high sidelobes. To
obtain low sidelobes in adaptive arrays, the concept of quiescent
pattern control is introduced in [26], by combining the adaptive
beamforming and deterministic pattern synthesis techniques. In
brief, when an adaptive array operates in the presence of white
noise only, the resultant adaptive beamformer is named as the
quiescent weight vector, and the corresponding array response
is termed as the quiescent pattern. Following the concept of
quiescent pattern control in [26]–[28], it is required to find a
mechanism to design a beamformer having the ability to reject
an interference (if it exists) and noise, and meanwhile, main-
taining the desirable shape of the quiescent pattern when only
white noise is present.

Note that the quiescent weight vector of LCMV beamformer
in (52) is wq = C(CHC)−1g that can be readily obtained by
setting Rn+i = σ2

nI. Unfortunately, for a given desired quies-
cent pattern, which usually has specific constraints on the upper
level of sidelobes, it is not easy to have a satisfactory quiescent
pattern via LCMV by specifying C and g, since LCMV only
imposes constraints on a fixed set of pre-assigned finite angles as
mentioned at the end of Section III-B. This is similarly true for
the multi-point OPARC algorithm presented in the preceding
Section III-B. Moreover, if we employ the iterative approach
adopted in deterministic pattern synthesis in Section III-A to
modify the shape of the obtained beampattern, nulls may not be
always formed at the directions of unknown real interferences,
and the adaptivity in suppressing undesirable components is
thus not well guaranteed.

In this subsection, a systematic approach to quiescent pattern
control is proposed. A two-stage procedure is developed, by tak-
ing advantage of the deterministic pattern synthesis approach
in Section III-A and also the concept of NCL mentioned in
Section III-B. More specifically, given a desired quiescent pat-
tern, denoted as Ld(θ), the multi-point OPARC based pat-
tern synthesis algorithm in Section III-A, see, Algorithm 4, is
adopted in the first stage to design a desirable quiescent pattern
off-line. Denote by wq , Tq and Lq (θ, θ0) the obtained (qui-
escent) weight vector, the associated VCM and the resulting
response pattern, respectively. One can readily know that

wq = T−1
q a(θ0). (64)

As mentioned earlier, the resulting Lq (θ, θ0) performs well in
maintaining the shape of Ld(θ), however, the above weight wq

has no ability to reject the potential interferences and noise. A
strategy of finding weight vector is thus required in quiescent

Algorithm 6: Multi-point OPARC based Quiescent Pattern
Control Algorithm.

1: give Ld(θ), synthesize a desirable quiescent pattern
Lq (θ, θ0) using Algorithm 4, obtain wq and Tq

2: estimate R̂n+i and σ̂2
n by (57) and (58), respectively, set

Tn+i = R̂n+i/σ̂2
n

3: obtain adaptive weight vector wa by Eqn. (66)
4: if extra constraints needed, modify wa by conducting

the multi-point OPARC algorithm
5: output the obtained weight wa and its corresponding

response pattern La(θ, θ0)

pattern control to, not only maintain the shape of Ld(θ) if only
white noise exists, but also suppress a possible real interference
and noise. From the adaptive array theory, a data-dependent
loading quantity Δ needs to be added to the VCM Tq , such that
the potential interferences and noise can be rejected. Moreover,
in the white noise only case, Δ should be zero such that the
weight wq in (64) can be retrieved. To do so, we carry out the
second stage, by taking real data into consideration and carrying
out an NCL operator to the VCM Tq via setting the associated
loading quantity Δ as

Δ = −I + Tn+i (65)

where Tn+i = Rn+i/σ2
n . The ultimate (adaptive) weight vector

is thus calculated as

wa = (Tq − I + Tn+i)−1a(θ0). (66)

The corresponding response pattern of wa (denoted as La(θ,
θ0)) can be obtained accordingly.

One can see that there are two components being suppressed
by wa in (66). The first one is the component of the virtual
interference which corresponds to Tq − I and helps to main-
tain the shape of Ld(θ). The second component is Tn+i , which
contains the real interference and noise that need to be rejected.
In the noise only scenario, the loading quantity Δ offsets zero
automatically and the quiescent weight vector wq in (64) ap-
pears, provided that the real noise shares the same structure as
the virtual noise, i.e., Rn+i = σ2

nI or Tn+i = I. Therefore, we
can see that the weight vector wq in (64) and its corresponding
beampattern Lq (θ, θ0) are exactly the quiescent weight vector
and quiescent pattern, respectively. Also, we should replace the
unknown Rn+i and σ2

n with R̂n+i in (57) and σ̂2
n in (58), re-

spectively, and set Tn+i = R̂n+i/σ̂2
n in practical applications.

It should be emphasized that we do not impose extra con-
straints (e.g., fixed null constraints considered in [26]) on the
resulting response pattern La(θ, θ0), since such kind of con-
straints can be aforehand considered in the first stage of the
above procedure. In addition, we can also make the fixed con-
straints satisfied by performing the multi-point OPARC algo-
rithm starting from the obtained wa in (66) and its correspond-
ing normalized covariance matrix T = Tq − I + Tn+i . This is
similar to the idea used in the preceding subsection. To make
it clear, we have summarized the multi-point OPARC based
quiescent pattern control algorithm in Algorithm 6.
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TABLE I
OBTAINED PARAMETER COMPARISON

IV. NUMERICAL RESULTS

We next present some simulations to demonstrate the pro-
posed multi-point OPARC algorithm and its applications.
Unless otherwise specified, we set ω = 6π × 108 rad/s and
consider an 11-element non-uniformly spaced linear array with
nonisotropic elements. Both the element locations xn and the
element patterns gn (θ) are listed in Table I in Part I [1], and
the same array configuration has been adopted in Part I [1]. The
beam axis is steered to θ0 = 20◦. We set βε = 10−10 in con-
ducting the iterative approach, and take δ = 10−15 and η = 900
for the C-ADMM approach. In addition, fn is specified as the
all-zero vector for the MA2RC algorithm in [2] for comparison,
SNR is taken as 10dB when it applies.

A. Illustration of Multi-Point OPARC

In this subsection, we demonstrate the multi-point OPARC
algorithm. Both the iterative approach and the C-ADMM ap-
proach are conducted, and then compared with the MA2RC al-
gorithm. As mentioned in [1], an ideal criterion of array response
control is to achieve the array response levels as desired, while
keeping the responses at any other directions unchanged. Two
metrics are developed in [1] to measure the performance of ar-
ray response control. Following the evaluation strategy adopted
in [1], we define

Dk,m � |Lk (θk−1,m , θ0) − Lk−1(θk−1,m , θ0)| (67)

to measure the response level differences between two con-
secutive response controls at θk−1,m , m = 1, . . . ,Mk−1 , where
Lk (θ, θ0) represents the resultant response after finishing the
k-th step of weight update. Since the response level at θk−1,m has
been adjusted in the (k − 1)th step as its desired level ρk−1,m ,
one can rewrite Dk,m as Dk,m = |Lk (θk−1,m , θ0) − ρk−1,m |,
m = 1, . . . ,Mk−1 . In addition, we define Jk as

Jk � 1
Mk−1

Mk −1∑

m=1

∣∣Lk (θk−1,m , θ0) − ρk−1,m

∣∣ (68)

which can be re-written as Jk = (1/Mk−1)
∑Mk −1

m=1 Dk,m and
measures the average difference between the resulting response
and the desired one at the previously-controlled angles θk−1,m ’s,
m = 1, . . . ,Mk−1 , after the k-th step of array response control.
Note that Jk is effective on measuring the level difference be-
tween the resulting response and the desired one, even if the
initial or previous responses are unqualified. Besides, the index
k should be not less than 2 when the metrics Dk and Jk apply.

Fig. 1. Curve of βM AX versus the iteration number.

For convenience, in the first example we carry out two steps of
the array response control algorithms with each step controlling
two angles, i.e., M1 = M2 = 2, and denote the adjusted an-
gles and the corresponding desired levels of the kth (k = 1, 2)
step as θk,m and ρk,m , m = 1, . . . ,Mk , respectively. More
specifically, we set θ1,1 = −45◦, ρ1,1 = −40 dB, θ1,2 = −5◦

and ρ1,2 = −30 dB for the first step of the response control.
Note that the same settings have been adopted in Section V.A in
Part I [1], where the single-point response control is realized in
sequence. In this part, we first conduct multi-point OPARC algo-
rithm by using the iterative method described in Algorithm 1. In
the first iteration, the OPARC algorithm in [1] is applied to con-
trol the responses of θ1,m to their desired levels ρ1,m , m = 1, 2,
one-by-one on m. We have β1,1,� = 1.5683, β1,2,� = 0.2504,
which is the same as the results obtained in Section V.A in
Part I [1]. Then, we continue our multi-point OPARC algo-
rithm by conducting the above iteration procedure for a number
of times. The curve of βMAX versus the iteration number is
depicted in Fig. 1. Note that the parameter βMAX measures
the maximal magnitudes of INRs of the newly assigned vir-
tual interferences in the current iteration, as shown in the 8th
line of Algorithm 1. From Fig. 1, one can see that βMAX de-
creases with iteration. Moreover, observation shows that it only
requires five iterations to converge, i.e., βMAX ≤ βε , and the
result is β̄1,1,� = 1.4700 and β̄1,2,� = 0.2506, which is, respec-
tively, close to β1,1,� and β1,2,� . Now we test the performance
of the C-ADMM approach. The obtained δMAX in (32) reduces
with the iteration, i.e., the procedure described in (29)–(31), as
shown in Fig. 2, and δMAX ≤ δ is met after about 130 iterations.
We obtain h1,� = [−0.1458 − j0.0203,−0.0687 − j0.0397]T .
Not surprisingly, it can be checked that the results of the above
two approaches correspond to the same weight vector. Hence,
the same beampatterns are synthesized for these two approaches
as shown in Fig. 3(a), from which one can see that the responses
of the two adjusted angles have been precisely controlled to their
desired values. Interestingly, when testing the MA2RC, the re-
sulting pattern is completely the same as that of the multi-point
OPARC algorithm. We believe that this occurs not accidentally
but with a reason that is, unfortunately, not clear yet.

In the second step of the response control, we take θ2,1 = 7◦,
ρ2,1 = −25 dB, θ2,2 = 28◦ and ρ2,2 = 0 dB. When conducting
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Fig. 2. Curve of δM AX versus the iteration number.

Fig. 3. Illustration of multi-point OPARC algorithm (the first example).

the multi-point OPARC algorithm, we obtain β̄2,1,� = 0.2555
and β̄2,2,� = −0.0804 for the iterative approach, and findh2,� =
[−0.1803 − j0.0653,−0.5434 − j0.9252]T after implement-
ing the C-ADMM method. Again, the above two sets of re-
sults correspond to the same beampattern as shown in Fig. 3(b),
where the resulting pattern of MA2RC is also displayed. From
Fig. 3(b), one can see that all the adjusted angles have been accu-
rately controlled as expected, for the three approaches. However,

TABLE II
SETTINGS OF θk ,m AND ρk ,m (k = 1, 2, m = 1, 2, 3, 4)

Fig. 4. Curves of J2 versus implementation index (the second example).

the mainlobe of the ultimate pattern of MA2RC is distorted and
a high sidelobe level is resulted. For comparison purpose, we
have listed several parameter measurements in Table I, from
which one can see that the MA2RC method brings large values
on both D2,m (m = 1, 2) and J2 , and results a less array gain
compared to the proposed multi-point OPARC algorithm.

To show that our algorithms behave well not only under care-
fully chosen array configurations, we carry out the second ex-
ample by randomly selecting the element number and positions,
taking the influence of mutual coupling into consideration, and
increasing the number of controlled points as well. In this case,
we consider a linear array with isotropic elements. The beam
axis is taken as θ0 = 5◦. We carry out two response control steps,
and pre-assign four angles and their corresponding desired levels
in each procedure, see Table II for details. Following the study
in Section V.C in Part I [1], we carry out Monte Carlo simula-
tion with 50 realizations. More specifically, the element number
N in each realization is randomly selected as a positive integer
from 8 to 16. The element space between two adjacent sensors
is distributed uniformly in the range [0.4λ, 0.6λ]. The mutual
coupling matrix (denoted as Z ∈ CN ×N ) is complex symme-
try with unit elements on diagonal. The amplitudes of other
entries of Z are fixed as 0.1, and their phases are distributed uni-
formly in the range [0, 2π). Although the configurations have
been randomized, simulations show that the proposed multi-
point OPARC algorithms can adjust the array response level as
desired at each response control step. The curves of J2 versus
the implementation index are depicted in Fig. 4, from which
one can see that our algorithms outperform MA2RC method
with less J2 in each realization. Therefore, the proposed algo-
rithms behave well not only under the circumstances of carefully
chosen array configurations. In addition, observe from Fig. 4
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Fig. 5. Resultant patterns at different steps when carrying out a nonuniform sidelobe synthesis for a nonuniform linear array.

that the results of the proposed two approaches may be slightly
different in a few cases when using randomized array settings.
The possible reason is that both approaches only provide sub-
optimal solutions but not the global one, and the result of the
second approach (C-ADMM) may depend on its initial setting,
as we have clarified earlier.

B. Array Pattern Synthesis Using Multi-Point OPARC

Starting from this subsection, the applications of multi-point
OPARC are simulated and the iterative approach in Section II.
C is adopted to illustrate the results. In this subsection, we focus
upon the application of multi-point OPARC to array pattern syn-
thesis and give two representative examples for demonstration.

1) Nonuniform Sidelobe Synthesis: In the first example, the
desired pattern has nonuniform sidelobes. Fig. 5 shows the syn-
thesized patterns of the proposed algorithm at different steps.
Clearly, in each synthesis step, all the sidelobe peaks, i.e., Ωk in
(48), are first determined from the previously synthesized pat-
tern. Notice that the response level of a selected sidelobe peak
can be either higher or lower (see Fig. 5(a) for reference) than
its desired level. It has been shown in Fig. 5 that it only requires
3 steps, i.e., k = 3, to synthesize a satisfactory beampattern.

For comparison, the resulting patterns of the proposed al-
gorithm, Philip’s method in [13], convex programming (CP)
method in [16], A2RC method (after carrying out 30 steps) in
[3] and MA2RC method (after carrying out 3 steps) in [2] are
displayed in Fig. 6. As expected, we can see that the pattern en-
velopes of Philip’s method and CP method are not aligned with
the desired level, since they cannot control the beampattern pre-
cisely according to the required specifications. Although A2RC
and MA2RC have the ability to precisely control the given array
responses, the obtained sidelobe peaks are not aligned with the
desired ones either, since only the sidelobe peaks higher than the
desired levels are selected and adjusted in these two approaches.

2) Large Array Consideration: In this example, pattern syn-
thesis for a large linearly half-wavelength-spaced array with
N = 80 isotropic elements is considered. The desired pattern
steers at θ0 = 50◦ with nonuniform sidelobes. More specifically,
the upper level is −35 dB in the sidelobe region [−90◦, 50◦) and
−25 dB in the rest of the sidelobe region.

Fig. 7 demonstrates several intermediate results of the pro-
posed algorithm. In every step, we select Ck = 20 sidelobe peak

Fig. 6. Resultant pattern comparison.

TABLE III
EXECUTION TIME COMPARISON WHEN CONDUCTING A LARGE-ARRAY

PATTERN SYNTHESIS

angles (see Eqn. (49) and (50) for details) and then adjust their
responses to the desired levels by using multi-point OPARC al-
gorithm. Simulation result shows that it only requires 11 steps,
i.e., k = 11, to synthesize a qualified pattern, see the ultimate
pattern in Fig. 7(c) for reference. The execution times of various
methods are provided in Table III, where the superiority of the
proposed algorithm can be clearly observed.

C. Multi-Constraint Adaptive Beamforming Using Multi-Point
OPARC

In this subsection, the multi-constraint adaptive beamform-
ing is realized by using the multi-point OPARC algorithm. For
simplicity, a perfect knowledge of the data covariance matrix is
assumed.

1) Sidelobe Constraint: In the first case, four sidelobe con-
straints are required. More specifically, the response levels of
−20◦, −18◦, −16◦ and −14◦ are expected to be all −40 dB.
Two interferences are impinged from−40◦ and−28◦ with INRs
30 dB and 25 dB, respectively.
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Fig. 7. Resultant patterns at different steps when carrying out a nonuniform sidelobe synthesis for a large uniform linear array.

Fig. 8. Result comparison of multi-constraint adaptive beamforming.

Fig. 8(a) displays the results of the optimal beamformer with
no sidelobe constraint, the LCMV method [20] and the pro-
posed one. Clearly, both the LCMV beamformer and the pro-
posed algorithm are able to shape deep nulls at the directions
of interferences (see the blue line). Meanwhile, the given side-
lobe constraints are well satisfied for both. When considering
the output SINR, we have SINR = 19.5601 dB for the LCMV
method and SINR = 19.6906 dB for the proposed one. We can
see that the proposed beamformer brings an improvement on
the output SINR compared to the LCMV beamformer.

2) Mainlobe Constraint: In the second case, two constraints
are imposed in the mainlobe region. The constraint angles are

19◦ and 21◦, and both of the desired levels are 0 dB. There are
three interferences coming from −32◦, 50◦ and 60◦ with an
identical INR 30 dB.

Fig. 8(b) depicts the resultant patterns. One can see that the
obtained pattern of the LCMV method is severely distorted, al-
though the two prescribed constraints are satisfied and the three
interferences are rejected. The corresponding output SINR is
11.1767 dB. Observing the resulting pattern of the proposed al-
gorithm, the two-point constraint is well satisfied and a flat-top
mainlobe is shaped with no distortion occurred. The correspond-
ing output SINR is 17.1260 dB, which is much higher than that
of the LCMV method.

D. Quiescent Pattern Control Using Multi-Point OPARC

In this subsection, we test the performance of the multi-point
OPARC based quiescent pattern control algorithm. The desired
quiescent pattern has a nonuniform sidelobe level as depicted
with black dash lines in Fig. 6.

In our proposed algorithm, quiescent pattern synthesis and
quiescent pattern control are jointly designed by the multi-point
OPARC algorithm. We have detailed the off-line synthesis pro-
cedure in Section IV-B and illustrated the obtained quiescent
pattern by red line in Fig. 6. Suppose that two interferences
come from −55◦ and −49◦ with INRs 30 dB. The obtained
adaptive response pattern is shown in Fig. 9(a), where we can
observe that two nulls are formed at the directions of the real
interferences, and the resultant sidelobe is close to the quiescent
one. The obtained output SINR is 19.2984 dB for the proposed
algorithm.

For comparison purpose, the classical linearly-constraint
based quiescent pattern control approach (denoted as LC-QPC
method for briefness) in [26] is also demonstrated, by using
the same synthesized quiescent pattern in Fig. 6. The resulting
pattern of LC-QPC is displayed in Fig. 9(a), where we find that
an obvious perturbation is caused in the sector [−15◦, 0◦] and
the overall shape can not be well maintained compared to the
desired one. The obtained output SINR is 19.2161 dB, which is
lower than that of the proposed algorithm.

Now we take extra fixed constraints into consideration by re-
stricting the response levels at directions 58◦ and 62◦ to be all
−40 dB. The results of the proposed algorithm and the LC-QPC
method are presented in Fig. 9(b), where we observe that both
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Fig. 9. Result comparison of quiescent pattern control.

of these two methods are able to reject the undesirable interfer-
ences with the prescribed constraints being satisfied. The same
as before, the proposed algorithm maintains a more desirable
shape than that of the LC-QPC method. When taking the output
SINR into account, the corresponding values are, respectively,
19.2382 dB (for the proposed algorithm) and 19.0967 dB (for
the LC-QPC method). The advantage of the proposed algorithm
is verified again.

V. CONCLUSIONS

In this paper, the optimal and precise array response control
(OPARC) algorithm proposed in Part I [1] has been extended
from a single point per step to a multi-points per step. Two
computationally attractive multi-point OPARC algorithms have
been proposed, by which the responses of multiple angles can
be adjusted. In addition, several applications of the multi-point
OPARC algorithm to array signal processing have been pre-
sented, and an innovate concept of normalized covariance ma-
trix loading (NCL) has been developed. Simulation results have
been provided to validate the effectiveness and superiority of
the proposed algorithms under different situations.
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