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Abstract—This paper presents a new scheme based on Weight
vector ORthogonal Decomposition (WORD) to control the array
response at a given direction and a novel WORD-based approach
to pattern synthesis for arbitrary arrays. The central concept of
the proposed methods stems from the adaptive array theory. More
precisely, it is found that the inverse of the noise-plus-interference
covariance matrix in adaptive beamforming can be regarded as a
linear combination of two orthogonal projection matrices, and, ac-
cordingly, the optimal weight vector is a linear combination of two
orthogonal vectors. With such an observation, the WORD scheme
is developed to design the desired weight vector. It is shown that
the array response at a given direction can be precisely adjusted
to an arbitrary level, by simply determining appropriate combi-
nation coefficients for those two orthogonal vectors. Furthermore,
a closed-form expression of the weight vector can be achieved by
introducing a new cost function that measures pattern variation.
By employing the WORD scheme successively, a novel approach
to pattern synthesis for arbitrary arrays is devised. At each imple-
mentation step of this approach, the array pattern is adjusted in a
point-by-point manner by successively modifying the weight vec-
tor. As such, both the sidelobe and mainlobe regions can be flexibly
synthesized. Numerical examples are provided to demonstrate the
effectiveness and flexibility of the WORD scheme in array response
control at a single direction as well as pattern synthesis.

Index Terms—Array pattern synthesis, array response control,
adaptive array theory, array signal processing.

I. INTRODUCTION

ARRAY antenna has found numerous applications to radar,
navigation, wireless communication and other fields [1].

Methods for optimal array antenna design play a critical role
in, for example, improving system performance and reduc-
ing cost. In particular, determining the complex weights for
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array elements to achieve a desired beampattern, i.e., pattern
synthesis, is a fundamental problem [2]–[9]. With regard to this
problem, it is expected to control the sidelobe of array response
to achieve a pencil beam pattern or to realize a shaped beam
pattern complying to a given mask. For instance, in radar sys-
tems, it is desirable to mitigate returns from interfering signals
by designing a pattern with several nulls at specified directions.
In some communication systems, it may be required to shape
multiple-beams patterns for multi-user reception. Additionally,
synthesizing a pattern with broad mainlobe is helpful for ex-
tending monitoring areas in satellite remote sensing.

In the past few decades, pattern synthesis has been attracted
much research interest and numerous techniques have been de-
veloped. The classical algorithms [10]–[12] have closed-form
expressions, however, they are limited to some specific array
geometries or array patterns. Many global optimization based
methods design array patterns by finding the optimal solutions
via stochastic approaches such as genetic algorithm (GA) [13],
particle swarm optimization (PSO) method [14] and simulated
annealing (SA) method [15]. In general, methods of this kind
are time-consuming. Another stream of pattern synthesis ap-
proaches [16]–[19] has been devised with the help of adaptive ar-
ray theory [20]–[22]. These methods iteratively minimize the de-
viation between the synthesized and desired patterns. It is note-
worthy that some key parameters such as the powers of virtual
interferences are selected in an ad hoc way [17]–[19], and de-
terministic schemes on parameter selection need investigation.

More recently, pattern nulling techniques based on innovative
architectural solutions requiring the ability of connecting or
disconnecting the array elements have been reported in [23] and
[24]. For these approaches, radio-frequency (RF) switches in
the beamforming network have been used for reconfiguring the
antenna pattern. In [25], the almost difference sets (ADSs) is
considered for the design of thinned planar arrays, where the
peak sidelobe levels (PSLs) can be predictable and deducible
from the knowledge of the array aperture. The synthesis of
modular and contiguously-clustered arrays has been addressed
in [26] through an innovative sparsity-regularized methodology.
The issue of maximum efficiency beam synthesis is considered
and further solved in [27] with the aid of generalized eigenvalue
decomposition. It should be noted that the above methods in
[23]–[27] focus on linear or planar arrays, their extensions to
other array geometries need further discussions and more efforts.

A different class of algorithms for the array pattern synthe-
sis problem have been devised along with recent advances in
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convex optimization [28]. For instance, in [29], Lebret and Boyd
proposed to express pattern synthesis problems as convex op-
timization problems, which can be solved using interior-point
methods. However, as emphasized therein, this approach is lim-
ited to some simple arrays where design problems are convex.
For linear and planar arrays with non-convex lower bound con-
straint on the beampattern, conjugate symmetric beamforming
weights have been utilized in [30] to reformulate the problem
as a convex one. In [31], Fuchs introduced the idea of semidef-
inite relaxation (SDR) [32] to the problem of pattern synthesis,
and succeeded to synthesize patterns with upper and lower con-
straints. Note that the resultant pattern may not meet the original
design requirements, since the relaxation can only lead to an ap-
proximate solution. Other convex optimization based methods
can be found in [33]–[35], where optimization toolbox, e.g.,
[36], is usually adopted to solve the resultant optimization prob-
lems. Apart from the aforementioned methods, there also exist
a few approaches attempting to control or synthesize patterns
by utilizing the least-squares method [37], [38], employing the
Fast Fourier Transformation (FFT) [39] or excitation matching
approach [40]. The interested reader is referred to the recent
work [41] for a more comprehensive literature review of array
response control and pattern synthesis.

Generally speaking, the approaches mentioned above cannot
flexibly control array response pattern. For instance, the pattern
has to be completely re-synthesized even if only some minor
changes of the pattern need to be made. The recently developed
accurate array response control (A2RC) algorithm [42] gives
a closed-form expression of weight vector to precisely control
the response level at a preassigned direction. Nevertheless, the
key parameter (i.e., μopt as denoted in [42]) is complex-valued,
which has to be determined by solving an optimization problem
with computationally inefficient global search or in an empirical
manner. More importantly, as shall be shown later, the ultimate
weight vector of A2RC may lead to severe pattern distortion due
to empirical selection of the parameter μ. This motivates us to
propose a new way to flexibly and precisely control a response
pattern (or design a desired weight vector) on the basis of a given
pattern (or a given weight vector). For this purpose, an elaborate
analysis of the optimal weight vector in adaptive beamforming
is firstly given. It is shown that the optimal weight vector, which
maximizes the signal-to-interference-plus-noise ratio (SINR) to
suppress a single interference, can be equivalently expressed as
a linear combination of two orthogonal vectors with specific
weighting coefficients. This implies that any response level at
a single direction can be achieved via weight vector orthogonal
decomposition (WORD) and weighting coefficients selection.

With this new WORD scheme, it is further proposed in this
paper to update the weight vector from its initial value in a step-
by-step manner to synthesize a desired pattern. In each step, the
response at one selected angle is adjusted to its desired level
under the condition that the pattern distortion at other regions
is minimized. On this basis, a new criterion is established to
measure pattern distortion and further help to select the optimal
parameter in a simple way. Comparing with conventional ap-
proaches, the proposed WORD-based pattern synthesis method
works in a deterministic manner and is able to flexibly and ac-

curately adjust the array responses without leading to a pattern
distortion. Unlike the A2RC approach [42], the key parameter
(i.e., β) is real-valued and can be simply determined from a test-
ing problem. Furthermore, the problem of pattern distortion can
be readily avoid in the proposed approach. Additionally, the pro-
posed pattern synthesis method can also be applied to arbitrary
arrays including commonly used uniform linear arrays (ULAs),
nonisotropic random arrays and two-dimensional arrays. Note
that although the WORD methodology stems from the adaptive
array theory, as can be seen later, the resulting pattern synthesis
problem is subject to certain constraints.

The paper is organized as follows. In Section II, the problem
formulation of pattern synthesis and adaptive array theory are
briefly given. The WORD scheme is devised in Section III and
its application to pattern synthesis is discussed in Section IV.
In Section V, comparisons with previous A2RC method and the
proposed one is elaborated. Numerical examples are conducted
in Section VI to demonstrate the performance of the proposed
method. Conclusions are drawn in Section VII.

II. PRELIMINARIES

We now give some preliminaries of adaptive array theory,
which will be exploited for pattern synthesis with constraints.
Let us consider an N -element antenna array with arbitrary
geometry. In what follows, we consider the one-dimensional
case for the sake of notational simplicity. Nevertheless, the
proposed methods herein can be straightforwardly applied to
two-dimensional scenarios. The steering vector associated with
direction θ is given by

a(θ) =
[
g1(θ)ejφ1 (θ) , . . . , gN (θ)ejφN (θ)

]T
(1)

where (·)T is the transpose operator, j =
√−1 is the imaginary

unit, gn (θ) represents the radiation pattern of the nth element
(we have gn (θ) = 1 when the antenna is isotropic), φn (θ) =
ωτn (θ) stands for the phase delay of the nth element, where
ω is the operation frequency, τn (θ) represents the time-delay
between the nth element and reference point. The far-field array
response (array factor) can thus be written as

f(θ) =
N∑

n=1

w∗
ngn (θ)ejφn (θ) = wHa(θ) (2)

where w = [w1 , w2 , . . . , wN ]T is the array weight vector, (·)∗
and (·)H denote the conjugate operator and conjugate transpose
operator, respectively.

The problem of pattern synthesis amounts to find an appro-
priate weight vector w such that the amplitude of the array
response, i.e., |f(θ)|, meets certain requirements. Numerous
techniques have been proposed in the literature [2]–[19], among
which various algorithms [16]–[19] are based on adaptive ar-
ray theory. In brief, in adaptive array processing, assume that
θ0 is the direction of arrival of the desired signal, to suppress
the interferences and noise, the optimal weight vector which
maximizes the SINR is given by

w� = R−1
n+i a(θ0) (3)
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where Rn+i is the noise-plus-interference covariance matrix.
For instance, in the scenario of a single interference and noise
being white, the noise-plus-interference covariance matrix can
be described as

Rn+i = σ2
nI + σ2

i a(θi)aH(θi) (4)

where σ2
n and σ2

i stand for noise power and interference power,
respectively, a(θi) is the interference steering vector, I is the
identity matrix with proper dimension. It has been shown in
[17]–[19] that the array pattern can be synthesized by selecting
the powers of the interferences in an ad hoc way. In the following
sections, a new parameterization of the optimal weight vector (3)
is introduced and a deterministic scheme for parameter selection
is devised.

III. ARRAY RESPONSE CONTROL VIA WORD

A. New Parameterization of the Optimal Weight Vector

To begin with, let us denote by R(a(θi)) the column space of
a(θi), then the projection matrix ontoR(a(θi)) can be expressed
as

P[a(θi )] = a(θi)(aH(θi)a(θi))−1aH(θi) =
a(θi)aH(θi)
‖a(θi)‖2

2
(5)

where ‖ · ‖2 denotes the Euclidean norm. Accordingly, the pro-
jection matrix onto the orthogonal complement of R(v) (i.e.,
R⊥(v)) is thus given by

P⊥
[a(θi )] = I − P[a(θi )]. (6)

Now, considering Rn+i in (4), an equivalent parameterization
of R−1

n+i can be obtained by applying the Woodbury lemma [45]
as follows

R−1
n+i =

1
σ2

n

(
I − σ2

i ‖a(θi)‖2
2

σ2
n + σ2

i ‖a(θi)‖2
2
· a(θi)aH(θi)

‖a(θi)‖2
2

)

=
1
σ2

n

(
I − P[a(θi )] +

σ2
n

σ2
n + σ2

i ‖a(θi)‖2
2
P[a(θi )]

)

=
1
σ2

n

(
P⊥

[a(θi )] + βP[a(θi )]

)
(7)

where β is a real number associated with σ2
n , σ2

i and a(θi) as

β =
σ2

n

σ2
n + σ2

i ‖a(θi)‖2
2
. (8)

It can be noticed from (7) that R−1
n+i is a linear combination

of P⊥
[a(θi )]

and P[a(θi )] with specific coefficients. Consequently,
the optimal weight vector in (3) can be parameterized as

w� =
(
P⊥

[a(θi )] + βP[a(θi )]

)
a(θ0) = w(0)⊥ + βw(0)‖

=
[
w(0)⊥ w(0)‖

] [
1 β

]T (9)

where the common factor 1/σ2
n is omitted for brevity, since

it does not affect the performance of the beamformer and the
shape of the beampattern. In the above expression (9), w(0)⊥

Fig. 1. Illustration of the orthogonal decomposition of w� .

and w(0)‖ are given by

w(0)⊥ = P⊥
[a(θi )]w(0) (10a)

w(0)‖ = P[a(θi )]w(0) (10b)

where w(0) denotes the quiescent weight vector as

w(0) = a(θ0) (11)

which actually corresponds to the optimal beamformer in the
presence of white noise only, i.e., when σ2

i = 0 or β = 1.
The parameterization in (9) provides an equivalent expression

of the optimal weight vector and illustrates that w� is a linear
combination of two orthogonal vectors w(0)⊥ and w(0)‖ with
coefficients 1 and β, respectively. It can be seen that β is the
key parameter to shape a notch at θi so as to suppress the
interference. The specific value of β in (8) contributes to an
optimal weight vector which results in a certain response level
(depth of the notch) at θi . In particular, we shall show that β
can be non-negative for response control, although in adaptive
processing it is restricted to this condition since the interference
power is non-negative.

B. Relationship Between Array Response and β

In order to explore the issue of how does β in (9) affect the
array response level at the given direction θi , let us first define
the angle ϕ(u,v) between two complex vectors u and v as
cos (ϕ(u,v)) � |uH v |

‖u‖2 ‖v‖2
, where ϕ(u,v) ∈ [0, π/2]. Moreover,

we define the normalized power response associated with a
weight vector w as

L(θ, θ0) � |wHa(θ)|2
|wHa(θ0)|2 . (12)

Hence, substituting w� in (9) into L(θi, θ0), one gets

L�(θi, θ0) =
‖a(θi)‖2

2 · cos2(ϕ(w� ,a(θi)))
‖a(θ0)‖2

2 · cos2(ϕ(w� ,a(θ0)))
. (13)

It can be observed that the response at θi depends on the angles
between w� and a(θi) as well as w� and a(θ0). Furthermore,
according to (9), it is known that L�(θi, θ0) is a function of β
which is to be determined.

To have a geometrical perspective, w� and its compo-
nents are depicted in Fig. 1, where ϕi � ϕ(w� ,a(θi)) =
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TABLE I
RESPONSES FOR DIFFERENT SELECTIONS OF β

ϕ(w(0)⊥ + βw(0)‖,a(θi)) and ϕ0 � ϕ(w� ,a(θ0)) = ϕ(w(0)⊥
+ βw(0)‖,a(θ0)). It is seen that w(0)‖ is the component ob-
tained by projecting w(0) along a(θi), while w(0)⊥ is the com-
ponent that projects w(0) into R⊥(a(θi)). Moreover, ϕi and ϕ0
change along with β. For instance, if β = 1, we have ϕ0 = 0 and
ϕi = ϕq where ϕq denotes the angle between w0 and a(θi), i.e.,
ϕq � ϕ(w0 ,a(θi)). In this case, we have w� = w0 and hence

L�(θi, θ0)
∣∣
β=1 =

|wH
0 a(θi)|2

|wH
0 a(θ0)|2 � Lq (14)

where Lq is the normalized quiescent power response at θi .
When attempting to decrease β from 1, it is seen that both ϕi

and ϕ0 begin to increase. In particular, when β = 0, ϕi achieves
its maximum value π/2, and the corresponding optimal weight
vector, i.e., w�1 in Fig. 1, becomes perpendicular to a(θi), so
we have

L�(θi, θ0)
∣∣
β=0 = 0. (15)

In other words, a deep notch can be obtained at θi by setting β
as zero.

We now proceed to examining what L�(θi, θ0) will be if
β < 0. Fig. 1 depicts a special case where the optimal weight
vector w�2 is orthogonal to a(θ0). In this case, we have β =
βp < 0,

|βp |·‖w ( 0 ) ‖‖2

‖w ( 0 )⊥‖2
= ‖w ( 0 )⊥‖2

‖w ( 0 ) ‖‖2
and βp = −‖w ( 0 )⊥‖2

2
‖w ( 0 ) ‖‖2

2
. It can be

verified that the associated weight vector is orthogonal to a(θ0),
i.e., wH

� a(θ0) = (w(0)⊥ + βpw(0)‖)H(w(0)⊥ + w(0)‖) = 0. As
a result, we have

L�(θi, θ0)
∣∣
β=βp

= +∞. (16)

Besides the above situations, there are two more cases, i.e.,
β tends to be +∞ and −∞, being worthy of consideration.
From Fig. 1, it is readily found that β → +∞ and β → −∞
corresponds to case that ϕi = 0 and ϕ0 = ϕq . Substitute ϕi = 0
and ϕ0 = ϕq into (13), we have

L�(θi, θ0)
∣∣
β→±∞ =

‖a(θi)‖2
2

Lq‖a(θ0)‖2
2

� L∞. (17)

The aforementioned typical cases are summarized in Table I.
In order to further investigate the behavior of L�(θi, θ0) with

respect to β, the monotonicity of L�(θi, θ0) is considered. As
shown in Appendix A, in the general case of aH(θ0)a(θi) 	= 0,
we have

∂L�(θi, θ0)
∂β

{
> 0, for β ∈ (−∞, βp) ∪ (0,+∞)
< 0, for β ∈ (βp, 0) . (18)

This indicates that L�(θi, θ0) is monotonically non-
decreasing in (−∞, βp) or (0,+∞), whereas monotonically

Fig. 2. Curve of L� (θ, θ0 ) versus β for a ULA.

non-increasing in (βp, 0). As discussed earlier, the normalized
response level tends to be infinity if β = βp and drops to be
zero if β = 0. This implies that any non-negative array response
level at θi can be achieved by varying β in R.

To validate the above results, let us take a ULA of N = 10
isotropic elements spaced by half wavelength for illustration.
The curve of L�(θi, θ0) versus β for θ0 = 0◦ and θi = 45◦ is
plotted in Fig. 2. In this case, we can figure out that Lq =
−19.1 dB, L∞ = 19.1 dB and βp = −80.3. From Fig. 2, we
can clearly see that L�(θi, θ0) becomes infinitely close to L∞
as β tends to infinity. When β = βp is taken, a peak is formed
and the response level at θi turns to be infinite. Moreover, Fig. 2
shows that L�(θi, θ0) attains its minimum when β = 0 and is
exactly equal to Lq when β = 1. In addition, the monotonicity
of L�(θi, θ0) is clearly displayed in Fig. 2.

It should be pointed out that the above results are obtained
based on fact that the previous weight vector is taken as a(θ0).
Thus, the normalized array response at θi can be arbitrarily set
(from 0 to +∞) by tuning β. However, as shall be discussed
later, given a weight vector other than a(θ0), the normalized
array response at an angle cannot be set to an arbitrarily large
value. More precisely, the normalized array response should be
no larger than one. As a matter of fact, it is a common sense
that, given the reference direction θ0 , it is implicitly required
that the normalized array responses at any other directions are
no larger than one, i.e.,

0 ≤ L(θ, θ0) ≤ 1. (19)

In the sequel, the normalized array response will be restricted
to this condition.

C. The Proposed WORD Scheme

In this subsection, the WORD algorithm for a given weight
vector is presented based on the previous discussions. Accord-
ing to (9), it is known that w� is updated from w0 with an
appropriate value of β, and hence, we treat w� and w0 as the
current weight vector and the previous weight vector, respec-
tively. This motivates us to generalize such a procedure to adjust
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the response of a given weight vector. More exactly, suppose that
the previous weight vector is w(k−1) , the desired weight vector
w(k) which adjusts the response at a direction θk to a certain
level, say ρk , can be updated as

w(k) =
[
w(k−1)⊥ w(k−1)‖

] [
1 β

]T (20)

where w(k−1)⊥ and w(k−1)‖ are defined according to (10) as

w(k−1)⊥ = P⊥
[a(θk )]w(k−1) (21a)

w(k−1)‖ = P[a(θk )]w(k−1) (21b)

and β can be determined from the following identity

L(k)(θk , θ0) =
|wH

(k)a(θk )|2
|wH

(k)a(θ0)|2 = ρk . (22)

In order to solve the above problem with respect to β, we first
substitute (20) into the numerator and denominator of (22), and
get

|wH
(k)a(θτ )|2 =

[
1 β

]
[
wH

⊥a(θτ )
wH

‖ a(θτ )

][
wH

⊥a(θτ )
wH

‖ a(θτ )

]H [
1
β

]

(23)

where τ ∈ {0, k}, w⊥ � w(k−1)⊥ and w‖ � w(k−1)‖ are de-
fined for notational simplicity.

As a consequence, after some manipulations, the problem in
(22) can be rewritten as

zTBz = 0 (24)

where z � [1 β]T , B is a 2 × 2 Hermitian matrix given by

B =
[
wH

⊥a(θk )
wH

‖ a(θk )

][
wH

⊥a(θk )
wH

‖ a(θk )

]H

− ρk

[
wH

⊥a(θ0)
wH

‖ a(θ0)

][
wH

⊥a(θ0)
wH

‖ a(θ0)

]H

=

[
−ρk |wH

⊥a(θ0)|2 −ρkwH
⊥a(θ0)aH(θ0)w‖

−ρkwH
‖ a(θ0)aH(θ0)w⊥ |wH

‖ a(θk )|2 − ρk |wH
‖ a(θ0)|2

]
.

(25)

where the identity wH
⊥a(θk ) = 0 has been used.

As shown in Appendix B, if 0 ≤ ρk ≤ 1 and aH(θk )a(θk ) >
|aH(θk )a(θ0)|, then (24) can be analytically solved with two
solutions given by

βa =
−(B(1, 2)) + d

B(2, 2)
(26a)

βb =
−(B(1, 2)) − d

B(2, 2)
(26b)

where d =
√2(B(1, 2)) − B(1, 1)B(2, 2) and (·) repre-

sents the real part of a complex number.
Note that in general we have aH(θk )a(θk ) ≥ |aH(θk )a(θ0)|

and the normalized response should be no larger than 1, i.e.,
0 ≤ ρk ≤ 1, as mentioned earlier. Up to now, the new WORD
scheme has been established.

IV. PATTERN SYNTHESIS VIA WORD

It is noticed that the WORD scheme can only deal with the
control of the response at a single direction. In this section,
we shall show how this scheme can be applied to synthesize a
pattern for an arbitrary array, which involves the control of the
sidelobe and/or mainlobe regions rather than a single direction.

Briefly speaking, the desired pattern is obtained by succes-
sively adjusting the response levels at the directions where the
specifications do not meet. More precisely, let Ld(θ, θ0) be the
desired pattern. An initial pattern is firstly obtained by setting
the weight vector as w(0) (not necessarily equals to a(θ0)), and
an angle θ1 , at which the response level requires adjustment, is
selected by comparing the initial pattern with the desired one.
Next, the WORD scheme is applied to modify the weight vec-
tor w(0) to w(1) , by setting the desired response level at θ1 as
Ld(θ1 , θ0). Similarly, by comparing L(1)(θ, θ0) with Ld(θ, θ0),
a second angle θ2 , at which the response is needed to be adjusted,
is selected. An updated weight vector w(2) can thus be achieved
via WORD. The above procedure is carried out successively
once a satisfactory array pattern has been obtained.

In summary, the proposed WORD-based pattern synthesis
technique includes the following main steps:

1) Give the initial angle θ0 , weight vector w(0) and desired
pattern Ld(θ, θ0), set k = 1.

2) Determine the angle θk where the response level needs
adjustment.

3) Obtain the weight vector w(k) by selecting an appropriate
value of β to achieve L(k)(θk , θ0) = Ld(θk , θ0).

4) Check whether the pattern L(k)(θ, θ0) is satisfactorily syn-
thesized. If not, set k = k + 1 and repeat steps 2 and 3,
otherwise, return the outputs w(k) and L(k)(θ, θ0).

It is noted that two key problems should be solved in the
WORD-based pattern synthesis approach. The first one is how
to select the angle θk where the response needs adjustment in
the k-th step. The other one is how to select one of the two β’s
(i.e., βa and βb ) derived above to finally obtain a unique weight
vector with better performance. These two problems will be
discussed in the following two subsections.

A. Selection of θk

In our proposed approach, θk is determined by comparing
the temporarily obtained response with the desired one. In par-
ticular, for sidelobe synthesis, θk is selected as the one where
L(k−1)(θ, θ0) exceeds the most from the desired Ld(θ, θ0), i.e.,

θk = arg max
θ∈Ω̃(k )

s

(
L(k−1)(θ, θ0) − Ld(θ, θ0)

)
(27)

where Ω̃(k)
s = {θ|L(k−1)(θ, θ0) > Ld(θ, θ0), θ ∈ Ωs} and Ωs

denotes the sidelobe region. On the other hand, for mainlobe
synthesis, θk is selected as

θk = arg max
θ∈Ωm

|L(k−1)(θ, θ0) − Ld(θ, θ0)| (28)

where Ωm denotes the mainlobe region.
It should be mentioned that when both the sidelobe and main-

lobe regions need to be synthesized, we first control the response
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TABLE II
SUMMARY OF WORD-BASED PATTERN SYNTHESIS

in the mainlobe region until the resultant pattern meets require-
ment. Then, we proceed to the sidelobe synthesis. This pro-
cedure may be performed repeatedly until satisfactory patterns
have been synthesized in both mainlobe and sidelobe regions.

B. Selection of β

From the last section, it is known that both βa and βb in (26)
lead to the desired response level ρk at θk in the k-th step. How-
ever, a more appropriate β should be picked from them such that
the pattern can be properly synthesized. With such considera-
tion, it is required that the variation of the synthesized patterns
between the k-th and (k − 1)-th steps should be minimized. To
this end, the variation of the pattern between two iterations is
measured as

F (β) =
∥∥∥∥P⊥

[w (k −1 ) ]
w(k)

‖w(k)‖2

∥∥∥∥
2

2

=

∥∥∥∥∥∥
P⊥

[w (k −1 ) ]
w(k−1)⊥ + βw(k−1)‖√

‖w(k−1)⊥‖2
2 + β2‖w(k−1)‖‖2

2

∥∥∥∥∥∥

2

2

. (29)

Hence, either βa or βb is chosen such that F (β) is minimized.
Let β� be the solution, then the weight vector w(k) can be
computed as

w(k) =
[
w(k−1)⊥ w(k−1)‖

] [
1 β�

]T
. (30)

It is seen that, different from the parameter selection means
adopted in [42], the parameter here is real-valued and can be
simply determined. Finally, the WORD-based approach for pat-
tern synthesis is summarized in Table II.

V. COMPARISONS OF A2RC AND WORD

In the A2RC method [42], given the previous weight w(k−1)
and an angle θk where the array response needs adjustment, the
weight vector is updated as

w(k) = w(k−1) + μa(θk ) (31)

where μ is the parameter to be determined. More specially, for
a certain pattern requirement (e.g., (22)), it has been shown in
[42] that μ locates in a specific set D, i.e.,

μ ∈ D � {μ∣∣[(μ) �(μ)]T ∈ Cμ} (32)

where Cμ is the trajectory set of [(μ) �(μ)]T to realize the
design requirement (22), �{·} denotes the imaginary part of a
complex-valued number. The set Cμ , as discussed in [42], is a
circle with specific center point and radius.

In order to determine μ from D, the variation of the
synthesized patterns between the k-th and (k − 1)-th steps
should be minimized and the variation is defined in [42] as∫

θ 	=θk

∣∣L(k)(θ, θ0) − L(k−1)(θ, θ0)
∣∣ dθ whose discretized ver-

sion is given by

J =
1
I

I∑
i=1

∣∣L(k)(θi, θ0) − L(k−1)(θi, θ0)
∣∣ (33)

where I denoting the number of sampling points in the angle
sector. Theoretically, a global research has to be performed
to find out the optimal value of μ to minimize the variation.
Since this is computationally intensive, an alternative strategy
to select μ was proposed in [42] with the aid of its geometrical
distribution as

μ� = arg min
μ∈D

|μ| � μa. (34)

However, we have to emphasize that in this strategy it cannot
be rigorously derived that the ultimate selection of μ in (34)
could produce an optimal pattern with minimum variation. Fur-
thermore, as shall be demonstrated later, the determination of μ
as (34) may even maximize the pattern variation and eventually
lead a distorted pattern in certain cases, which was not well
investigated in [42].

Unlike the A2RC algorithm, in the WORD algorithm, there
are only two candidates, i.e., βa and βb in (26), to achieve the
requirement (22). Moreover, a new criterion is developed in (29)
to measure the pattern variation, and a simple testing problem
is devised to determine the final β� , which can avoid the pattern
distortion problem encountered in A2RC.

In brief, the main differences between the proposed WORD
method and A2RC method include:

� The variable β to be optimized in WORD is real-valued,
whereas the variable μ in A2RC is complex-valued.

� There are only two candidates for β to be picked up in
WORD, whereas in A2RC, the parameter μ is determined
from a set with infinite candidates.

� A simple testing problem can be used to determine β in
WORD, whereas in A2RC a global search is theoretically
required to obtained the optimal μ, although a geometrical
approach is empirically applied.

� A more simple cost function (29) is introduced in WORD
as compared to the one (33) in A2RC to choose the desir-
able values of the parameters.

� The determination of β in WORD is theoretically guaran-
teed, whereas the determination of μ via (34) is only an
empirical approach.

VI. NUMERICAL RESULTS

In this section, representative numerical examples are carried
out. Without specification, the quiescent weight vector a(θ0)
will be employed as the initial weight w(0) in the following
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Fig. 3. Achieve to L(1) (θ1 , θ0 ) = 0 dB from the Chebyshev weight.

simulations. For comparison purpose, the synthesized patterns
of the A2RC method in [42] and optimization based method
in [29] or [31] will also be demonstrated. More specially, if
there is no lower bound constraint on the desired pattern, the
convex programming (CP) method in [29] will be carried out.
Otherwise, the SDR method in [31] will be executed due to the
non-convexity of the problem.

A. Response Control of a Uniformly Spaced Linear Array

In this example, a ULA with 16 isotropic elements is con-
sidered. The beam center is fixed at θ0 = 20◦. To show the
flexibility of the proposed WORD approach, we set w(0) as the
Chebyshev weight vector with a−25 dB uniform sidelobe level.
On this basis, we successively adjust the normalized response
levels at θ1 = −10◦ and θ2 = 17 to be 0 dB and compare the per-
formance of the proposed WORD approach with that of A2RC.
Additionally, to measure the function J in (33), we uniformly
sample the region [−90◦, 90◦] every 0.1◦ and hence obtain 1801
discrete points, i.e., I = 1801.

In the first step, we can figure out that βa = 27.1619,
βb = −25.4210 and further F (βa) = 0.4590, F (βb) = 0.4988.
Since F (βa) < F (βb), it is implied that βa should be se-
lected. When considering the variation of J in (33), we have
J(βa) = 0.0479 < J(βb) = 0.0488, which is consistent with
the relationship between F (βa) and F (βb). For A2RC, it can
be calculated that μa = 0.6515 − j0.2880. Interestingly, we can
verify that the WORD method and A2RC method actually result
the same weight vector w(1) . Fig. 3 shows the resultant patterns
of these two approaches. It can be seen that the obtained patterns
of WORD and A2RC are coincident. More importantly, either
of them achieves L(1)(θ1 , θ0) = 0 dB with no pattern distortion
occurred.

On the basis of the first step, the second step is carried out to
realize L(2)(θ2 , θ0) = 0 dB. In this step, we have βa = 2.5907,
βb = −0.3520, F (βa) = 0.1959 and F (βb) = 0.4553. Obvi-
ously, the βa should be selected since F (βa) < F (βb). When
considering J in (33), we can calculate that J(βa) = 0.0551 <
J(βb) = 0.9392, which is still consistent with F (βa) < F (βb).

Fig. 4. J versus φ in the second step of response control.

Fig. 5. Achieve to L(2) (θ2 , θ0 ) = 0 dB on the basis of the first step.

On the other hand, for the A2RC method it can be figured
out that μa = −0.2827 − j0.6668 and φa = 4.3114 (defined in
Eq. (51) of [42]). To show the irrationality of selecting μa , the
curve of J versus φ (see Eq. (40) of [42]) is depicted in Fig. 4. It is
seen that J achieves the maximum at φ = φa . This observation
was unfortunately ignored in [42] and implies that the selec-
tion of μa actually results a pattern with the worst performance.
Fig. 5 shows the resulting patterns in the above scenario. It is
clearly seen that the response levels can be precisely adjusted
to be the desired values for both approaches. However, it is no-
ticed that the obtained pattern of A2RC is severely distorted,
and a good pattern is difficult to re-obtain by continuing the
synthesis procedure. While for the proposed WORD approach,
a preferable parameter is selected to guarantee the outstanding
performance of the resulting pattern.

B. Uniform Sidelobe Synthesis for ULA

Consider a 11-element ULA with isotropic elements. The de-
sired pattern steers at θ0 = 20◦ with uniform sidelobe level less
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Fig. 6. Synthesis procedure of uniform-sidelobe pattern using a ULA. (a) Synthesized pattern at the first step. (b) Synthesized pattern at the second step.
(c) Synthesized pattern at the 10-th step. (d) Comparison of the synthesized pattern after 15 steps with other methods.

than −25 dB. From the initial pattern, a single angle θ1 ≈ 37◦,
which locates in the sidelobe region and at which the response
level exceeds most than its corresponding desired level, is se-
lected. On this basis, a weight vector w(1) can be obtained via
WORD to adjust the normalized level at θ1 to −25 dB. Fig. 6(a)
shows the initial pattern and the synthesized pattern L(1)(θ, θ0)
after the first step.

In the second step, the angle θ2 ≈ 5◦ is selected since
L(1)(θ2 , θ0) exceeds most above −25 dB in sidelobe region.
Fig. 6(b) depicts the two patterns L(1)(θ, θ0) and L(2)(θ, θ0). It
is seen that the response at θ2 has been accurately adjusted to
−25 dB, and the response level at θ1 still meets the specification.

Fig. 6(c) plots the synthesized pattern at the 10-th step. It is
observed that all sidelobe levels of the resultant pattern are close
to the desired values.

Fig. 6(d) depicts the obtained pattern at the 15-th step.
For comparison purpose, the resulting patterns of Chebyshev
method, A2RC method in [42] and CP method in [29] are also
displayed. Note that the runtimes of WORD, A2RC and CP
methods are respectively 0.04 s, 0.04 s and 4.02 s. Hence, the

WORD is more computationally efficient than the CP method.
Interestingly, the obtained patterns of WORD and A2RC are
same in this specific scenario, and either of them has nearly no
difference between the Chebyshev pattern. Additionally, it is
seen that the resulting pattern of the CP method is somewhat
different from that of the WORD algorithm. This is because the
response level in the CP method is only required to be no larger
than (but not exactly equal to) the prescribed value.

To explore the convergence of the proposed approach, let us
define Dk as the maximum response deviation within the sector
Ω̃(k)

s at the kth step, i.e.,

Dk � max
θ∈Ω̃(k )

s

(
L(k)(θ, θ0) − Ld(θ, θ0)

)
. (35)

Fig. 7 plots the curve of Dk against the iteration number k.
Clearly, it is seen that Dk decreases along with the increase
of iterations. Moreover, the change of Dk is ignorable after 11
steps. Therefore, we terminate the synthesis process after 15
iterations in this example. As a matter of fact, in all examples
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Fig. 7. Maximum response deviation Dk versus the iteration number.

TABLE III
ELEMENT LOCATIONS OF NONUNIFORMLY SPACED LINEAR ARRAY AND

WEIGHTS OBTAINED BY THE PROPOSED METHOD

we tested in this work, it is found that the proposed method
converges to satisfactory solutions.

C. Multibeam Pattern Synthesis for Nonuniformly Spaced
Linear Array

In this example, multibeam pattern synthesis for the 16-
element nonuniformly spaced linear array is considered. The
element locations are given in Table III. We assume that the
two beams steering at 30◦ and −10◦, respectively. Here, we take
a(30◦) as the initial weight, and then apply the proposed WORD
algorithm to control the response at −10◦ to 0 dB by setting
L(1)(−10◦, 30◦) = 0 dB. On this basis, the proposed WORD
based pattern synthesis method is utilized to adjust sidelobe re-
sponse to be lower than −25 dB. After implementing 50 steps,
a satisfactory pattern is obtained and the corresponding weight-
ings are listed in Table III.

The synthesized patterns of the WORD, A2RC (with a same
iteration number as WORD) and CP methods are shown in
Fig. 8. It is clearly seen that the resultant pattern of WORD is
well synthesized in both sidelobe region and mainlobe region.
However, the obtained pattern of A2RC is somewhat irregular,
due to its irrational determination of parameter μ. The resulting
pattern of CP method meets the design requirement. However,
since it does not attempt to exactly adjust the response level to
a specific value, the synthesized pattern is more irregular.

Fig. 8. Synthesized multibeam patterns for a nonuniformly spaced linear array.

TABLE IV
PARAMETERS OF THE NONISOTROPIC RANDOM ARRAY AND THE OBTAINED

WEIGHTINGS BY WORD APPROACH

D. Pattern Synthesis for Nonisotropic Linear Random Array

To further examine the performance of the proposed method
for pattern synthesis, a 21-element nonisotropic linear random
array (see e.g., [42]–[44]) is considered. The pattern of the nth
element is given by

gn (θ) =
cos (πln sin (θ + ζn )) − cos (πln )

cos (θ + ζn )
(36)

where ζn and ln represent the orientation and length of the
element, respectively. More details of the array can be found
in Table IV, where the element positions (in wavelength) also
specialized. The desired pattern has flat-top mainlobe and broad-
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Fig. 9. Synthesized pattern with flat-top mainlobe and broad-notch sidelobe
for a nonisotropic random array.

notch sidelobe. Specifically, all response levels in the mainlobe
[−15◦, 15◦] are expected to be 0 dB. The upper level is −35 dB
in the sidelobe region [60◦, 80◦] and −25 dB in the rest of the
sidelobe region.

In this scenario, constraints are set to simultaneously control
the upper and lower bounds of the mainlobe. Therefore, the
CP method [29] is not applicable owing to the fact that the
lower bound constraint is non-convex. For this reason, the SDR
method [31], which is also based on convex optimization but
overcoming the drawback of [29], is conducted and tested. Fig. 9
plots the initial pattern and the synthesized patterns of different
approaches. The resulting weightings of the proposed WORD
approach (after carrying out 450 steps of iteration) are shown in
Table IV. Obviously, it can be noticed from Fig. 9 that although
the initial pattern is considerably different from the desired one,
the proposed WORD-based approach successfully synthesizes
a satisfactory pattern which has a flat-top mainlobe with ripple
being less than 0.2 dB and sidelobes as desired. On the other
hand, from Fig. 9 we know that the obtained patterns of the
A2RC method and SDR method are distorted. Hence, either of
these two approaches fails to synthesize a desirable pattern in
this case. It should be pointed out that the performance of the
SDR method depends on the specific problem. It can perform
well in certain cases as shown in the next example.

E. Pattern Synthesis for Isotropic Uniform Linear Array

Following [31], we consider a 20-element ULA (with inter-
elment spacing being 0.45 wavelengths) to design a pattern
having a flat-top mainlobe and a uniform sidelobe. Specifically,
all response levels in the mainlobe [−40◦, 40◦] are expected to
be 0 dB and the upper level is −25 dB in the sidelobe region.
The initial pattern and the synthesized patterns of different ap-
proaches are depicted in Fig. 10. It is seen that both the proposed
WORD-based approach and SDR method successfully synthe-
sizes a satisfactory pattern, which has a flat-top mainlobe with

Fig. 10. Synthesized pattern with flat-top mainlobe.

ripple being less than 0.1 dB and sidelobes as desired. How-
ever, it is experimentally found that, to complete the synthesis
procedure, the SDR method requires about one minute, which
is much longer than that of the proposed WORD method.

F. Pattern Synthesis for Two-Dimensional Array

In order to demonstrate the wide applicability of the pro-
posed WORD-based approach. An example of pattern syn-
thesis for a two-dimensional array is carried out. Without
loss of generality, we consider a rectangular array composed
of 16 × 16 isotropic elements which are spaced by half a
wavelength. Fig. 11(a) shows the desired pattern, where u =
sin (θe) cos (θa), v = sin (θe) sin (θa), and θe and θa stand
for elevation and azimuth angles, respectively. The desired
pattern steers at (u0 , v0) = (0.3, 0.3) with a mainlobe region
ΘM = {(u, v)

∣∣|u − u0 | + |v − v0 | ≤ 0.3}. The upper level of
the desired pattern is −35 dB in the sidelobe region ΘS =
{(u, v)

∣∣ − 0.8 ≤ u ≤ −0.5} and −15 dB in the rest of the side-
lobe region.

Fig. 11(b) displays the resulting synthesized pattern of A2RC
approach after carrying out 3000 steps. Notice that the main-
lobe region of the obtained pattern is fluctuant to some ex-
tent. Fig. 11(c) gives the synthesized pattern of the proposed
WORD approach after executing the same number of itera-
tion steps, and Fig. 11(d) plots its top view. It can be clearly
seen that the resultant mainlobe beampattern is quite flat, mean-
while, the sidelobe region of synthesized pattern meets the
qualification.

To illustrate the superiority of WORD more clearly, Fig. 12
shows the beampattern in u direction for a fixed v = v0 and
Fig. 13 plots the beampattern in v direction for a fixed u = u0 .
From these two figures, it can be observed that the mainlobe
pattern of A2RC method is far from satisfaction. For the de-
vised WORD approach, the obtained ripple in mainlobe region
of the resultant pattern is less than 0.2 dB and the sidelobe level
meets the requirement well. Therefore, the preference of the pro-
posed WORD method, especially when comparing with A2RC,
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Fig. 11. 2-D pattern synthesis with a 16 × 16 isotropic elements planar array. (a) The desired 2-D shape. (b) The synthesized beampattern via A2 RC approach.
(c) The synthesized beampattern via WORD approach. (d) Top view of the 2-D synthesized pattern of WORD method.

Fig. 12. Beampattern in u direction for a fixed v = v0 .

is obvious. Note that the SDR method in [31] is not presented
in this case, since it turns out to be time-consuming and even
unsolvable due to the large number of constraints in the formu-
lated optimization problem.

Fig. 13. Beampattern in v direction for a fixed u = u0 .

VII. CONCLUSIONS

In this paper, a novel scheme called weight vector orthogo-
nal decomposition (WORD) has been developed to flexibly and
accurately control the array response level. In this algorithm,
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an analytical expression of the weight vector has been derived
to adjust the beampattern response at a given angle to its pre-
assigned level. Moreover, it has been successfully employed to
synthesize desired patterns for arbitrary arrays. The proposed
WORD-based pattern synthesis approach successively adjusts
the response levels to their desired values until the whole pattern
is successfully synthesized. A more feasible criterion has been
introduced to guarantee the optimality of synthesized pattern
in each step. The difference between the proposed method and
previous A2RC method has been summarized. The effectiveness
and superiority of the WORD scheme for array response control
at a single direction and pattern synthesis have been validated by
various examples including linear and rectangular arrays. It is
worth mentioning that the WORD algorithm is vulnerable to ar-
ray imperfections, which have not been considered in this work,
and we shall consider its extension for robust pattern synthesis
under uncertainties in our future work.

APPENDIX A
DETAILED DERIVATION OF (18)

Firstly, substituting w� = w(0)⊥ + βw(0)‖ into L�(θi, θ0)
and recalling the identity wH

(0)⊥a(θi) = 0, one gets

L�(θi,θ0) =
|wH

� a(θi)|2
|wH

� a(θ0)|2 =
β2

∣∣wH
(0)‖a(θi)

∣∣2
∣∣wH

(0)⊥a(θ0) + βwH
(0)‖a(θ0)

∣∣2 .

(37)

Note that according to (10), we have

w(0)‖ =
a(θi)aH(θi)a(θ0)

aH(θi)a(θi)
. (38)

It can be simply verified that wH
(0)‖a(θ0) is real and positive.

Thus, dividing (wH
(0)‖a(θ0))2 on both numerator and denomi-

nator of (37) yields

L�(θi, θ0) =
|wH

(0)‖a(θi)|2
(wH

(0)‖a(θ0))2 · β2

∣∣∣wH
(0 )⊥a(θ0 )

wH
(0 ) ‖a(θ0 ) + β

∣∣∣
2 . (39)

Owing to the fact that a(θ0) = w(0) = w(0)⊥ + w(0)‖ and
wH

(0)⊥w(0)‖ = 0, we have

wH
(0)⊥a(θ0)

wH
(0)‖a(θ0)

=
‖w(0)⊥‖2

2

‖w(0)‖‖2
2

= −βp (40)

where βp is defined above (16). On this basis, L�(θi, θ0) can be
further simplified as

L�(θi, θ0) = μ(θi, θ0) · β2

(β − βp)2 (41)

where μ(θi, θ0) � |wH
(0)‖a(θi)|2/(wH

(0)‖a(θ0))2 > 0. Thus, the
partial derivative of L�(θi, θ0) with respect to β is

∂L�(θi, θ0)
∂β

= −2μ(θi, θ0) · ββp

(β − βp)3 . (42)

Since μ(θi, θ0) > 0 and βp < 0, it can be concluded that

∂L�(θi, θ0)
∂β

{
> 0, β ∈ (−∞, βp) ∪ (0,+∞)
< 0, β ∈ (βp, 0)

. (43)

This completes the derivation.

APPENDIX B
SOLUTION TO (24)

To begin with, it is necessary to show that if 0 ≤ ρk ≤ 1 and
aH(θk )a(θk ) > |aH(θk )a(θ0)|, then

B(2, 2) > 0. (44)

From the expression of B in (25), the proof of (44) can be
equivalently converted to the following inequality

|wH
‖ a(θk )|2 > ρk |wH

‖ a(θ0)|2 . (45)

Owing to the fact that

w‖ =
a(θk )aH(θk )w(k−1)

aH(θk )a(θk )
(46)

Eq. (45) can be further rewritten as

ρk <
|wH

‖ a(θk )|2
|wH

‖ a(θ0)|2 =

∣∣∣∣
wH

(k −1 ) a(θk )aH (θk )
aH (θk )a(θk ) a(θk )

∣∣∣∣
2

∣∣∣∣
wH

(k −1 ) a(θk )aH (θk )
aH (θk )a(θk ) a(θ0)

∣∣∣∣
2

=
|aH(θk )a(θk )|2
|aH(θk )a(θ0)|2

. (47)

Obviously, if ρk ≤ 1 and aH(θk )a(θk ) > |aH(θk )a(θ0)|, we
can obtain that

ρk ≤ 1 <
|aH(θk )a(θk )|2
|aH(θk )a(θ0)|2 . (48)

According to (48), it is readily known that (47) and hence (44)
hold true.

To solve the equation (24), we take Eigenvalue decomposition
(EVD) of B, i.e.,

B = QΛQH (49)

where Q is an unitary matrix, Λ = diag{λ1 , λ2} with λ1 and
λ2 are eigenvalues of B. Define

y � QHz. (50)

Then (24) can be equivalently expressed as yTλy = 0, and
further

λ1 |y(1)|2 + λ2 |y(2)|2 = 0. (51)

Since λ1λ2 = det(B) = −ρk |wH
⊥a(θ0)|2 |wH

‖ a(θk )|2 ≤ 0, we
learn that (51) is logical and can be solved. Denote

Q =
[

u11 u12
u21 u22

]
. (52)



1298 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 5, MARCH 1, 2018

Since y = QHz, we have y(1) = u∗
11 + u∗

21β and y(2) =
u∗

12 + u∗
22β. Then we obtain

λ1 |y(1)|2 + λ2 |y(2)|2

= λ1 |u∗
11 + u∗

21β|2 + λ2 |u∗
12 + u∗

22β|2

= λ1 |u11 |2 + λ2 |u12 |2︸ ︷︷ ︸
B(1,1)

+ (λ1u
∗
21u11 + λ2u

∗
22u12)︸ ︷︷ ︸

B(1,2)

β+

(λ1u
∗
11u21 + λ2u

∗
12u22)︸ ︷︷ ︸

B(2,1)

β + (λ1 |u21 |2 + λ2 |u22 |2)︸ ︷︷ ︸
B(2,2)

β2

= B(1, 1) + 2(B(1, 2))β + B(2, 2)β2 (53)

where we have utilized the facts that

B(1, 1) = λ1 |u11 |2 + λ2 |u12 |2 (54)

B(1, 2) = λ1u
∗
21u11 + λ2u

∗
22u12 (55)

B(2, 1) = λ1u
∗
11u21 + λ2u

∗
12u22 (56)

B(2, 2) = λ1 |u21 |2 + λ2 |u22 |2 . (57)

As a result, (51) can be rewritten as a quadratic equation as
follows

B(1, 1) + 2(B(1, 2))β + B(2, 2)β2 = 0. (58)

From the expression of B and the conclusion (44), we have

2(B(1, 2)) − B(1, 1)B(2, 2) ≥ 0. (59)

Thus, (58) can be analytically solved with solution given by

βa,b = (−(B(1, 2)) ± d)
/
B(2, 2) (60)

where d =
√2(B(1, 2)) − B(1, 1)B(2, 2). This completes

the derivation.
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