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Abstract 

In this paper, tensors are innovatively applied to array optimization. Thus, an algorithm for synthesis of sparse linear arrays 
with multi-beampattern is proposed. Different from the traditional matrix pencil method (MPM), the proposed algorithm 
arranges the data obtained from the desired beampatterns into tensor form. Then a low-rank approximation is performed on 
this data tensor to obtain a new low-rank tensor, which is decomposed by higher-order singular value (HOSVD). By 
employing rotation invariance, we determine the element position of sparse array. Finally, the least square method is used to 
obtain the excitations corresponding to the new array, and the desired beampatterns are synthesized. Compared to MPM, our 
method accelerates running time while ensuring high accuracy in synthesizing beampatterns.  

1 Introduction 

The synthesis of a non-uniform antenna array with as few 
elements as possible has considerable practical applications 
[1]-[4]. Sparse arrays can not only reduce costs but also 
simplify systems. Hence, the synthesis of such sparse arrays 
has received increasing attention in the past period. 

Random optimization is a classic synthesis technique, 
including genetic algorithm (GA) [5], simulated annealing 
(SA) [6], particle swarm optimization (PSO) [7] and 
differential evolution algorithm (DE) [8], etc. However, 
stochastic optimization algorithms have high computational 
complexity, especially for large arrays. In [9], Keizer 
proposed an iterative fast Fourier transform algorithm, 
significantly reducing computational complexity. And 
convex optimization has also been utilized to synthesize 
sparse arrays in [10]. Unlike the methods mentioned above, 
MPM can not restrict candidate antennas to grids [11],[12], 
thereby increasing the degree of freedom in the arrangement 
of array elements. On this basis, Liu et al. proposed the 
forward–backward matrix pencil method (FBMPM) by 
improving MPM in [13]. And in [14], extended matrix pencil 
method (EMPM) was introduced for multi-beampattern. 
MPM performs sparse array synthesis by constructing Hankel 
matrices and using low-rank approximation. However, its 
computational complexity increases significantly as the 
number of patterns increases. Furthermore, Bayesian 
compression sensing (BCS) technique [15],[16] offer another 
approach for synthesizing sparse arrays, where candidate 
antennas may not be limited to grids. BCS obtains both 
optimal positions and optimal excitations of a new sparse 
array through a relevance vector machine. 

With reduced memory costs and the advent of advanced 
technology, it has become possible to collect and store vast 
amounts of data for various scientific, medical, and 
engineering applications. The data collected usually has more 
than two dimensions and is stored in multi-way groups as 
tensors instead of matrices. Tensors have found widespread 
practical applications in diverse fields such as chemo-metrics 
[17], psychometrics [18], signal processing [19], computer 
vision [20]-[22], data mining [23],[24], graph analysis [25], 
neuroscience [26]-[28] and many more. Moreover, due to the 
in-depth research on tensor related technologies, such as 
tensor singular value decomposition [29], low-rank 
approximation [30], low-rank completion [31], etc., tensor 
has also become an efficient means of data processing. 

In this paper, we propose an innovative approach that 
applies tensors to the synthesis of linear sparse arrays. 
Initially, the expected beampatterns are evenly sampled to 
form a tensor. Subsequently, low-rank approximation is 
performed on the tensor to obtain a corresponding low-rank 
tensor. And the lower-rank tensor actually corresponds to the 
approximated patterns that consists of a smaller number of 
antenna elements. This process determines the number of 
elements for the new sparse array, which equals the rank of 
the low-rank tensor. Next, we perform a HOSVD of the low-
rank tensor (i.e., Tucker decomposition of the tensor) to 
obtain the factor matrix. The rotation invariance of factor 
matrix is then used to determine the new elements positions. 
Finally, the corresponding excitation coefficients are 
calculated by the least square method, and the desired 
beampatterns are synthesized. The results demonstrate that 
the proposed method is capable of synthesizing a sparse array 
that satisfies multiple desired beampatterns with an 
appropriate number of reconstruction array elements and less 
running time. 
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Fig. 1 Schematic diagram of the composition and decomposition of the tensor . 

 
2. Sparse Array Synthesis Algorithm with 
Tensor 

2.1 Array Model 
Let a uniform linear array (ULA) be composed of  

antennas. For simplicity, we assume that all antennas are 
isotropic. Considering  desired patterns, the -th 
beampattern can be written as: 

  (1) 

where  represents the complex excitation coefficient for 

the -th pattern of the -th element,  stands for the 

distance from the -th element to the reference element, 

. ,  is the wavelength.  is 

the imaginary unit, and .One can see that  is 

defined in the domain . Sampling  uniformly: 

  (2) 

where the number of samples is , and  

is the sampling interval. Due to the Nyquist sampling 
theorem, the condition that  must be 

satisfied, where . For example, for an 

array having  elements with a uniform spacing of , the 

sampling interval  should satisfy , which 

indicates that . Hence, the response of each 

sampling point can be expressed as: 

  (3) 

where . And we consider the following vector: 

  (4) 

Let , and the 

constructed tensor  is as follows: 

  (5) 
where , . And 

. 

  (6) 

where . Thus, the tensor  can be represented 

as follows: 

  (7) 

where  represents outer product operation, and 

.  and 

. Hence, we can write the tensor 

 as 

  (8) 
where  is a core tensor of size  with 

hyperdiagonal structure and diagonal element 1. And 
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, , 

. The symbol  stands for the -

mode product operation. The arrangement of sampled data 
and the composition and decomposition of the tensor are 
illustrated in Fig 1. 

2.2 Synthesis of Sparse Array 
In this subsection, the tucker decomposition of tensors 

needs to be introduced first. Tucker decomposition, also 
known as higher-order singular value decomposition, is a 
multi-linear extension of SVD. Tucker decomposition 
represents a given tensor as a combination of a kernel tensor 
multiplied by a factor matrix along each mode in order to 
represent the associated information of each mode subspace 
and the inherent structure information of data. Hence, the 
Tucker decomposition of the tensor  is carried out as: 
  (9) 
where  is the core tensor size of . Different 

from singular value matrix, the core tensor does not take 
diagonal structure and is generally a full tensor, that is, its 
non-diagonal elements are usually not equal to zero. The 
factor matrix  requires the orthogonal column structure 

similar to the left singular matrix and unitary matrix of SVD, 
that is, any two columns of  are mutually orthogonal. 

 and  correspond to the same column space. 

In addition, if the number of samples is large enough, the 
rank of the tensor is equal to the number of elements. If we 
want to reduce the number of array elements, an 
approximation error  can be added when conducting 

HOSVD, so as to obtain a low-rank approximation 
decomposition result: 

  (10) 

where  is Frobenius norm. So, we have: 

  (11) 
where  is a non-singular matrix. In the case of tensors, from 

the structure of , we are not hard to see that it satisfies a 

particular rotational invariance: 

  (12) 
where ,  and  are obtained by 

removing the last and first row of , respectively. By 

combining (11) and (12), the following equation can be 
derived: 

  (13) 

where ,  and   are obtained by 

removing the last and first row of , respectively. From 

(13) we can find matrix , and then perform SVD on the 

matrix to obtain the eigenvalues  and . 

So, there is 

  (14) 
Therefore, by Eq. (14), we can calculate the element 
positions of the new sparse array. Finally, the corresponding 
excitations are solved by the least squares method: 

  (15) 
where  is the array manifold of the new sparse array and 

. 

3 Simulations 

In this section, representative simulations are carried out to 
validate the proposed method. For comparison purpose, the 
EMPM in [14] is also tested.  

In the first situation, we consider a ULA of  
isotropic elements spaced by half wavelength. We selected 

 beampatterns, whose mainlobe directions change 
uniformly at  intervals in , and the 
sidelobe levels are all constrained to below -30dB. The 
simulation results are shown in Fig 2 and Fig 4.  

We set the number of new elements to 43 for both the 
proposed method and EMPM. The low rank approximation 
error of the proposed method is , while which of EMPM 
is . The distribution of new and initial elements is 
demonstrated in the Fig 2, and it can be observed that the 
arrays obtained by both methods are non-uniform and the 
elements are not restricted to the original positions. The 
apertures of new arrays obtained by the proposed algorithm 
and EMPM both are 29.50 . The beampatterns synthesized 
by new and initial arrays are displayed in the Fig 4, and we 
can observe that the final synthesized beampatterns of the 
two methods can meet the requirements well, except that the 
synthesized beampattern of EMPM has slightly higher 
sidelobe levels near  and . 

In the second situation, a ULA of  isotropic 
elements spaced by half wavelength is considered. We 
selected  beampatterns with mainlobe directions 
changing uniformly at  intervals in . 
In particular, the level of a notch at  in the sidelobe 
is limited to less than -40dB, while all the other sidelobe 
levels are below -20dB. The simulation results are shown in 
Fig 3 and Fig 5.  

The new array consists of 40 elements. The proposed 
method still sets the low rank approximation error to , 
while that of EMPM is . In Fig 3, the distribution of new 
and initial elements is demonstrated. It can be seen that the 
array obtained by the two methods are not uniform, and the 
distribution of elements is not limited by the original element
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Fig. 2 Comparison of the positions of the new and initial elements. 

 

 
Fig 3. Comparison of the positions of the new and initial elements. 

 

 
Fig 4. Comparison of the beampattern of the new and initial 
array. 

 
Fig 5. Comparison of the beampattern of the new and initial 
array. 
 
positions. The apertures of new arrays obtained by the 
proposed algorithm and EMPM are both 29.50 . And 
beampatterns synthesized by new and initial arrays are 
displayed in the Fig 5. The sidelobe levels of the synthesized 
beampatterns are lower than -20dB, but the sidelobe levels at 
the notch are slightly higher than -40dB. To sum up, both 
methods are effective. 

 

The running time of the proposed method and EMPM with 
different parameter settings are presented in Table 1. Overall,  
it can be concluded that the proposed method is faster than 
EMPM, making it more efficient for practical and 
applications. In addition, the computation time of EMPM 
varies significantly with the chosen parameters, but the 
proposed method consistently maintains a fast computation 
speed. 

 
Table 1 Comparison of running time. 
 
Parameter 
setting 

proposed method EMPM 

 
M=20, P=13 0.03s 0.06s 
M=20, P=81 0.04s 0.53s 
M=60, P=13 0.12s 0.35s 
M=60, P=81 0.20s 11.48s 
M=100, P=13 0.14s 0.54s 
M=100, P=81 0.63s 19.97s 
M=150, P=81 1.14s 61.02s 
M=150, P=151 1.72s 216.51s 

 
4 Conclusion 

In this paper, we have introduced a novel sparse array 
synthesis algorithm by utilizing tensors in array optimization. 
Specifically, transformed the sampled data of the reference 
beampatterns into a tensor and then performed a low-rank 
approximation to obtain a low-rank tensor. Then the low-rank 
tensor was decomposed by HOSVD to get the element 
positions and excitations of the new sparse array. The 
simulation results of two scenarios have demonstrated the 
effectiveness of the proposed algorithm in synthesizing 
sparse arrays that meet the requirements of multi-beampattern. 
Notably, our proposed algorithm outperforms EMPM in 
terms of running time, particularly when the number of 
elements and beampatterns increase. 
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